

    
      
          
            
  
Jinja

[image: _images/jinja-logo.png]
 [https://palletsprojects.com/p/jinja/]Jinja is a fast, expressive, extensible templating engine. Special
placeholders in the template allow writing code similar to Python
syntax. Then the template is passed data to render the final document.


Contents:


	Introduction
	Installation





	API
	Basics

	High Level API

	Autoescaping

	Notes on Identifiers

	Undefined Types

	The Context

	Loaders

	Bytecode Cache

	Async Support

	Policies

	Utilities

	Exceptions

	Custom Filters

	Custom Tests

	Evaluation Context

	The Global Namespace

	Low Level API

	The Meta API





	Sandbox
	Security Considerations

	API

	Operator Intercepting





	Native Python Types
	Examples

	API





	Template Designer Documentation
	Synopsis

	Variables

	Filters

	Tests

	Comments

	Whitespace Control

	Escaping

	Line Statements

	Template Inheritance

	HTML Escaping

	List of Control Structures

	Import Context Behavior

	Expressions

	List of Builtin Filters

	List of Builtin Tests

	List of Global Functions

	Extensions

	Autoescape Overrides





	Extensions
	Adding Extensions

	i18n Extension

	Expression Statement

	Loop Controls

	With Statement

	Autoescape Extension

	Debug Extension

	Writing Extensions

	Example Extensions

	Extension API





	Integration
	Flask

	Django

	Babel

	Pylons





	Switching From Other Template Engines
	Django

	Mako





	Tips and Tricks
	Null-Default Fallback

	Alternating Rows

	Highlighting Active Menu Items

	Accessing the parent Loop





	Frequently Asked Questions
	Why is it called Jinja?

	How fast is Jinja?

	Isn’t it a bad idea to put logic in templates?

	Why is HTML escaping not the default?





	BSD-3-Clause License

	Changes
	Version 3.2.0

	Version 3.1.2

	Version 3.1.1

	Version 3.1.0

	Version 3.0.3

	Version 3.0.2

	Version 3.0.1

	Version 3.0.0

	Version 2.11.3

	Version 2.11.2

	Version 2.11.1

	Version 2.11.0

	Version 2.10.3

	Version 2.10.2

	Version 2.10.1

	Version 2.10

	Version 2.9.6

	Version 2.9.5

	Version 2.9.4

	Version 2.9.3

	Version 2.9.2

	Version 2.9.1

	Version 2.9

	Version 2.8.1

	Version 2.8

	Version 2.7.3

	Version 2.7.2

	Version 2.7.1

	Version 2.7

	Version 2.6

	Version 2.5.5

	Version 2.5.4

	Version 2.5.3

	Version 2.5.2

	Version 2.5.1

	Version 2.5

	Version 2.4.1

	Version 2.4

	Version 2.3.1

	Version 2.3

	Version 2.2.1

	Version 2.2

	Version 2.1.1

	Version 2.1

	Version 2.0

	Version 2.0rc1












            

          

      

      

    

  

    
      
          
            
  
Introduction

Jinja is a fast, expressive, extensible templating engine. Special
placeholders in the template allow writing code similar to Python
syntax. Then the template is passed data to render the final document.

It includes:


	Template inheritance and inclusion.


	Define and import macros within templates.


	HTML templates can use autoescaping to prevent XSS from untrusted
user input.


	A sandboxed environment can safely render untrusted templates.


	Async support for generating templates that automatically handle
sync and async functions without extra syntax.


	I18N support with Babel.


	Templates are compiled to optimized Python code just-in-time and
cached, or can be compiled ahead-of-time.


	Exceptions point to the correct line in templates to make debugging
easier.


	Extensible filters, tests, functions, and even syntax.




Jinja’s philosophy is that while application logic belongs in Python if
possible, it shouldn’t make the template designer’s job difficult by
restricting functionality too much.


Installation

We recommend using the latest version of Python. Jinja supports Python
3.7 and newer. We also recommend using a virtual environment [https://packaging.python.org/tutorials/installing-packages/#creating-virtual-environments] in order
to isolate your project dependencies from other projects and the system.

Install the most recent Jinja version using pip:

$ pip install Jinja2






Dependencies

These will be installed automatically when installing Jinja.


	MarkupSafe [https://markupsafe.palletsprojects.com/] escapes untrusted input when rendering templates to
avoid injection attacks.






Optional Dependencies

These distributions will not be installed automatically.


	Babel [https://babel.pocoo.org/] provides translation support in templates.









            

          

      

      

    

  

    
      
          
            
  
API

This document describes the API to Jinja and not the template language
(for that, see Template Designer Documentation). It will be most useful as reference
to those implementing the template interface to the application and not
those who are creating Jinja templates.


Basics

Jinja uses a central object called the template Environment.
Instances of this class are used to store the configuration and global objects,
and are used to load templates from the file system or other locations.
Even if you are creating templates from strings by using the constructor of
Template class, an environment is created automatically for you,
albeit a shared one.

Most applications will create one Environment object on application
initialization and use that to load templates.  In some cases however, it’s
useful to have multiple environments side by side, if different configurations
are in use.

The simplest way to configure Jinja to load templates for your
application is to use PackageLoader.

from jinja2 import Environment, PackageLoader, select_autoescape
env = Environment(
    loader=PackageLoader("yourapp"),
    autoescape=select_autoescape()
)





This will create a template environment with a loader that looks up
templates in the templates folder inside the yourapp Python
package (or next to the yourapp.py Python module). It also enables
autoescaping for HTML files. This loader only requires that yourapp
is importable, it figures out the absolute path to the folder for you.

Different loaders are available to load templates in other ways or from
other locations. They’re listed in the Loaders section below. You can
also write your own if you want to load templates from a source that’s
more specialized to your project.

To load a template from this environment, call the get_template()
method, which returns the loaded Template.

template = env.get_template("mytemplate.html")





To render it with some variables, call the render() method.

print(template.render(the="variables", go="here"))





Using a template loader rather than passing strings to Template
or Environment.from_string() has multiple advantages.  Besides being
a lot easier to use it also enables template inheritance.


Notes on Autoescaping

In future versions of Jinja we might enable autoescaping by default
for security reasons.  As such you are encouraged to explicitly
configure autoescaping now instead of relying on the default.





High Level API

The high-level API is the API you will use in the application to load and
render Jinja templates.  The Low Level API on the other side is only
useful if you want to dig deeper into Jinja or develop extensions.


	
class jinja2.Environment([options])

	The core component of Jinja is the Environment.  It contains
important shared variables like configuration, filters, tests,
globals and others.  Instances of this class may be modified if
they are not shared and if no template was loaded so far.
Modifications on environments after the first template was loaded
will lead to surprising effects and undefined behavior.

Here are the possible initialization parameters:



	block_start_string
	The string marking the beginning of a block.  Defaults to '{%'.



	block_end_string
	The string marking the end of a block.  Defaults to '%}'.



	variable_start_string
	The string marking the beginning of a print statement.
Defaults to '{{'.



	variable_end_string
	The string marking the end of a print statement.  Defaults to
'}}'.



	comment_start_string
	The string marking the beginning of a comment.  Defaults to '{#'.



	comment_end_string
	The string marking the end of a comment.  Defaults to '#}'.



	line_statement_prefix
	If given and a string, this will be used as prefix for line based
statements.  See also Line Statements.



	line_comment_prefix
	If given and a string, this will be used as prefix for line based
comments.  See also Line Statements.


Changelog
New in version 2.2.





	trim_blocks
	If this is set to True the first newline after a block is
removed (block, not variable tag!).  Defaults to False.



	lstrip_blocks
	If this is set to True leading spaces and tabs are stripped
from the start of a line to a block.  Defaults to False.



	newline_sequence
	The sequence that starts a newline.  Must be one of '\r',
'\n' or '\r\n'.  The default is '\n' which is a
useful default for Linux and OS X systems as well as web
applications.



	keep_trailing_newline
	Preserve the trailing newline when rendering templates.
The default is False, which causes a single newline,
if present, to be stripped from the end of the template.


Changelog
New in version 2.7.





	extensions
	List of Jinja extensions to use.  This can either be import paths
as strings or extension classes.  For more information have a
look at the extensions documentation.



	optimized
	should the optimizer be enabled?  Default is True.



	undefined
	Undefined or a subclass of it that is used to represent
undefined values in the template.



	finalize
	A callable that can be used to process the result of a variable
expression before it is output.  For example one can convert
None implicitly into an empty string here.



	autoescape
	If set to True the XML/HTML autoescaping feature is enabled by
default.  For more details about autoescaping see
Markup.  As of Jinja 2.4 this can also
be a callable that is passed the template name and has to
return True or False depending on autoescape should be
enabled by default.


Changelog
Changed in version 2.4: autoescape can now be a function





	loader
	The template loader for this environment.



	cache_size
	The size of the cache.  Per default this is 400 which means
that if more than 400 templates are loaded the loader will clean
out the least recently used template.  If the cache size is set to
0 templates are recompiled all the time, if the cache size is
-1 the cache will not be cleaned.


Changelog
Changed in version 2.8: The cache size was increased to 400 from a low 50.





	auto_reload
	Some loaders load templates from locations where the template
sources may change (ie: file system or database).  If
auto_reload is set to True (default) every time a template is
requested the loader checks if the source changed and if yes, it
will reload the template.  For higher performance it’s possible to
disable that.



	bytecode_cache
	If set to a bytecode cache object, this object will provide a
cache for the internal Jinja bytecode so that templates don’t
have to be parsed if they were not changed.

See Bytecode Cache for more information.



	enable_async
	If set to true this enables async template execution which
allows using async functions and generators.









	Parameters:

	
	block_start_string (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	block_end_string (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	variable_start_string (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	variable_end_string (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	comment_start_string (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	comment_end_string (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	line_statement_prefix (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 


	line_comment_prefix (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 


	trim_blocks (bool [https://docs.python.org/3/library/functions.html#bool]) – 


	lstrip_blocks (bool [https://docs.python.org/3/library/functions.html#bool]) – 


	newline_sequence (te.Literal['\n', '\r\n', '\r']) – 


	keep_trailing_newline (bool [https://docs.python.org/3/library/functions.html#bool]) – 


	extensions (Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Type [https://docs.python.org/3/library/typing.html#typing.Type][Extension]]]) – 


	optimized (bool [https://docs.python.org/3/library/functions.html#bool]) – 


	undefined (Type [https://docs.python.org/3/library/typing.html#typing.Type][Undefined]) – 


	finalize (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[...], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]) – 


	autoescape (Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]], bool [https://docs.python.org/3/library/functions.html#bool]]]) – 


	loader (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][BaseLoader]) – 


	cache_size (int [https://docs.python.org/3/library/functions.html#int]) – 


	auto_reload (bool [https://docs.python.org/3/library/functions.html#bool]) – 


	bytecode_cache (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][BytecodeCache]) – 


	enable_async (bool [https://docs.python.org/3/library/functions.html#bool]) – 









	
shared

	If a template was created by using the Template constructor
an environment is created automatically.  These environments are
created as shared environments which means that multiple templates
may have the same anonymous environment.  For all shared environments
this attribute is True, else False.






	
sandboxed

	If the environment is sandboxed this attribute is True.  For the
sandbox mode have a look at the documentation for the
SandboxedEnvironment.






	
filters

	A dict of filters for this environment.  As long as no template was
loaded it’s safe to add new filters or remove old.  For custom filters
see Custom Filters.  For valid filter names have a look at
Notes on Identifiers.






	
tests

	A dict of test functions for this environment.  As long as no
template was loaded it’s safe to modify this dict.  For custom tests
see Custom Tests.  For valid test names have a look at
Notes on Identifiers.






	
globals

	A dict of variables that are available in every template loaded
by the environment. As long as no template was loaded it’s safe
to modify this. For more details see The Global Namespace.
For valid object names see Notes on Identifiers.






	
policies

	A dictionary with Policies.  These can be reconfigured to
change the runtime behavior or certain template features.  Usually
these are security related.






	
code_generator_class

	The class used for code generation.  This should not be changed
in most cases, unless you need to modify the Python code a
template compiles to.






	
context_class

	The context used for templates.  This should not be changed
in most cases, unless you need to modify internals of how
template variables are handled.  For details, see
Context.






	
overlay([options])

	Create a new overlay environment that shares all the data with the
current environment except for cache and the overridden attributes.
Extensions cannot be removed for an overlayed environment.  An overlayed
environment automatically gets all the extensions of the environment it
is linked to plus optional extra extensions.

Creating overlays should happen after the initial environment was set
up completely.  Not all attributes are truly linked, some are just
copied over so modifications on the original environment may not shine
through.


Changelog
Changed in version 3.1.2: Added the newline_sequence,, keep_trailing_newline,
and enable_async parameters to match __init__.




	Parameters:

	
	block_start_string (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	block_end_string (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	variable_start_string (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	variable_end_string (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	comment_start_string (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	comment_end_string (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	line_statement_prefix (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 


	line_comment_prefix (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 


	trim_blocks (bool [https://docs.python.org/3/library/functions.html#bool]) – 


	lstrip_blocks (bool [https://docs.python.org/3/library/functions.html#bool]) – 


	newline_sequence (te.Literal['\n', '\r\n', '\r']) – 


	keep_trailing_newline (bool [https://docs.python.org/3/library/functions.html#bool]) – 


	extensions (Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Type [https://docs.python.org/3/library/typing.html#typing.Type][Extension]]]) – 


	optimized (bool [https://docs.python.org/3/library/functions.html#bool]) – 


	undefined (Type [https://docs.python.org/3/library/typing.html#typing.Type][Undefined]) – 


	finalize (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[...], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]) – 


	autoescape (Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]], bool [https://docs.python.org/3/library/functions.html#bool]]]) – 


	loader (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][BaseLoader]) – 


	cache_size (int [https://docs.python.org/3/library/functions.html#int]) – 


	auto_reload (bool [https://docs.python.org/3/library/functions.html#bool]) – 


	bytecode_cache (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][BytecodeCache]) – 


	enable_async (bool [https://docs.python.org/3/library/functions.html#bool]) – 






	Return type:

	Environment










	
undefined([hint, obj, name, exc])

	Creates a new Undefined object for name.  This is useful
for filters or functions that may return undefined objects for
some operations.  All parameters except of hint should be provided
as keyword parameters for better readability.  The hint is used as
error message for the exception if provided, otherwise the error
message will be generated from obj and name automatically.  The exception
provided as exc is raised if something with the generated undefined
object is done that the undefined object does not allow.  The default
exception is UndefinedError.  If a hint is provided the
name may be omitted.

The most common way to create an undefined object is by providing
a name only:

return environment.undefined(name='some_name')





This means that the name some_name is not defined.  If the name
was from an attribute of an object it makes sense to tell the
undefined object the holder object to improve the error message:

if not hasattr(obj, 'attr'):
    return environment.undefined(obj=obj, name='attr')





For a more complex example you can provide a hint.  For example
the first() filter creates an undefined object that way:

return environment.undefined('no first item, sequence was empty')





If it the name or obj is known (for example because an attribute
was accessed) it should be passed to the undefined object, even if
a custom hint is provided.  This gives undefined objects the
possibility to enhance the error message.






	
add_extension(extension)

	Adds an extension after the environment was created.


Changelog
New in version 2.5.




	Parameters:

	extension (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Type [https://docs.python.org/3/library/typing.html#typing.Type][Extension]]) – 



	Return type:

	None










	
compile_expression(source, undefined_to_none=True)

	A handy helper method that returns a callable that accepts keyword
arguments that appear as variables in the expression.  If called it
returns the result of the expression.

This is useful if applications want to use the same rules as Jinja
in template “configuration files” or similar situations.

Example usage:

>>> env = Environment()
>>> expr = env.compile_expression('foo == 42')
>>> expr(foo=23)
False
>>> expr(foo=42)
True





Per default the return value is converted to None if the
expression returns an undefined value.  This can be changed
by setting undefined_to_none to False.

>>> env.compile_expression('var')() is None
True
>>> env.compile_expression('var', undefined_to_none=False)()
Undefined






Changelog
New in version 2.1.




	Parameters:

	
	source (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	undefined_to_none (bool [https://docs.python.org/3/library/functions.html#bool]) – 






	Return type:

	TemplateExpression










	
compile_templates(target, extensions=None, filter_func=None, zip='deflated', log_function=None, ignore_errors=True)

	Finds all the templates the loader can find, compiles them
and stores them in target.  If zip is None, instead of in a
zipfile, the templates will be stored in a directory.
By default a deflate zip algorithm is used. To switch to
the stored algorithm, zip can be set to 'stored'.

extensions and filter_func are passed to list_templates().
Each template returned will be compiled to the target folder or
zipfile.

By default template compilation errors are ignored.  In case a
log function is provided, errors are logged.  If you want template
syntax errors to abort the compilation you can set ignore_errors
to False and you will get an exception on syntax errors.


Changelog
New in version 2.4.




	Parameters:

	
	target (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], PathLike [https://docs.python.org/3/library/os.html#os.PathLike]]) – 


	extensions (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Collection [https://docs.python.org/3/library/typing.html#typing.Collection][str [https://docs.python.org/3/library/stdtypes.html#str]]]) – 


	filter_func (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[str [https://docs.python.org/3/library/stdtypes.html#str]], bool [https://docs.python.org/3/library/functions.html#bool]]]) – 


	zip (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 


	log_function (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[str [https://docs.python.org/3/library/stdtypes.html#str]], None]]) – 


	ignore_errors (bool [https://docs.python.org/3/library/functions.html#bool]) – 






	Return type:

	None










	
extend(**attributes)

	Add the items to the instance of the environment if they do not exist
yet.  This is used by extensions to register
callbacks and configuration values without breaking inheritance.


	Parameters:

	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 



	Return type:

	None










	
from_string(source, globals=None, template_class=None)

	Load a template from a source string without using
loader.


	Parameters:

	
	source (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Template]) – Jinja source to compile into a template.


	globals (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][MutableMapping [https://docs.python.org/3/library/typing.html#typing.MutableMapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]) – Extend the environment globals with
these extra variables available for all renders of this
template. If the template has already been loaded and
cached, its globals are updated with any new items.


	template_class (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Type [https://docs.python.org/3/library/typing.html#typing.Type][Template]]) – Return an instance of this
Template class.






	Return type:

	Template










	
get_or_select_template(template_name_or_list, parent=None, globals=None)

	Use select_template() if an iterable of template names
is given, or get_template() if one name is given.


Changelog
New in version 2.3.




	Parameters:

	
	template_name_or_list (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Template, List [https://docs.python.org/3/library/typing.html#typing.List][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Template]]]) – 


	parent (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 


	globals (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][MutableMapping [https://docs.python.org/3/library/typing.html#typing.MutableMapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]) – 






	Return type:

	Template










	
get_template(name, parent=None, globals=None)

	Load a template by name with loader and return a
Template. If the template does not exist a
TemplateNotFound exception is raised.


	Parameters:

	
	name (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Template]) – Name of the template to load. When loading
templates from the filesystem, “/” is used as the path
separator, even on Windows.


	parent (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The name of the parent template importing this
template. join_path() can be used to implement name
transformations with this.


	globals (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][MutableMapping [https://docs.python.org/3/library/typing.html#typing.MutableMapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]) – Extend the environment globals with
these extra variables available for all renders of this
template. If the template has already been loaded and
cached, its globals are updated with any new items.






	Return type:

	Template






Changelog
Changed in version 3.0: If a template is loaded from cache, globals will update
the template’s globals instead of ignoring the new values.




Changed in version 2.4: If name is a Template object it is returned
unchanged.








	
join_path(template, parent)

	Join a template with the parent.  By default all the lookups are
relative to the loader root so this method returns the template
parameter unchanged, but if the paths should be relative to the
parent template, this function can be used to calculate the real
template name.

Subclasses may override this method and implement template path
joining here.


	Parameters:

	
	template (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	parent (str [https://docs.python.org/3/library/stdtypes.html#str]) – 






	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
list_templates(extensions=None, filter_func=None)

	Returns a list of templates for this environment.  This requires
that the loader supports the loader’s
list_templates() method.

If there are other files in the template folder besides the
actual templates, the returned list can be filtered.  There are two
ways: either extensions is set to a list of file extensions for
templates, or a filter_func can be provided which is a callable that
is passed a template name and should return True if it should end up
in the result list.

If the loader does not support that, a TypeError [https://docs.python.org/3/library/exceptions.html#TypeError] is raised.


Changelog
New in version 2.4.




	Parameters:

	
	extensions (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Collection [https://docs.python.org/3/library/typing.html#typing.Collection][str [https://docs.python.org/3/library/stdtypes.html#str]]]) – 


	filter_func (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[str [https://docs.python.org/3/library/stdtypes.html#str]], bool [https://docs.python.org/3/library/functions.html#bool]]]) – 






	Return type:

	List [https://docs.python.org/3/library/typing.html#typing.List][str [https://docs.python.org/3/library/stdtypes.html#str]]










	
select_template(names, parent=None, globals=None)

	Like get_template(), but tries loading multiple names.
If none of the names can be loaded a TemplatesNotFound
exception is raised.


	Parameters:

	
	names (Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Template]]) – List of template names to try loading in order.


	parent (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – The name of the parent template importing this
template. join_path() can be used to implement name
transformations with this.


	globals (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][MutableMapping [https://docs.python.org/3/library/typing.html#typing.MutableMapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]) – Extend the environment globals with
these extra variables available for all renders of this
template. If the template has already been loaded and
cached, its globals are updated with any new items.






	Return type:

	Template






Changelog
Changed in version 3.0: If a template is loaded from cache, globals will update
the template’s globals instead of ignoring the new values.




Changed in version 2.11: If names is Undefined, an UndefinedError
is raised instead. If no templates were found and names
contains Undefined, the message is more helpful.




Changed in version 2.4: If names contains a Template object it is
returned unchanged.




New in version 2.3.












	
class jinja2.Template(source, block_start_string='{%', block_end_string='%}', variable_start_string='{{', variable_end_string='}}', comment_start_string='{#', comment_end_string='#}', line_statement_prefix=None, line_comment_prefix=None, trim_blocks=False, lstrip_blocks=False, newline_sequence='\n', keep_trailing_newline=False, extensions=(), optimized=True, undefined=<class 'jinja2.runtime.Undefined'>, finalize=None, autoescape=False, enable_async=False)

	A compiled template that can be rendered.

Use the methods on Environment to create or load templates.
The environment is used to configure how templates are compiled and
behave.

It is also possible to create a template object directly. This is
not usually recommended. The constructor takes most of the same
arguments as Environment. All templates created with the
same environment arguments share the same ephemeral Environment
instance behind the scenes.

A template object should be considered immutable. Modifications on
the object are not supported.


	Parameters:

	
	source (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Template]) – 


	block_start_string (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	block_end_string (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	variable_start_string (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	variable_end_string (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	comment_start_string (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	comment_end_string (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	line_statement_prefix (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 


	line_comment_prefix (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 


	trim_blocks (bool [https://docs.python.org/3/library/functions.html#bool]) – 


	lstrip_blocks (bool [https://docs.python.org/3/library/functions.html#bool]) – 


	newline_sequence (te.Literal['\n', '\r\n', '\r']) – 


	keep_trailing_newline (bool [https://docs.python.org/3/library/functions.html#bool]) – 


	extensions (Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Type [https://docs.python.org/3/library/typing.html#typing.Type][Extension]]]) – 


	optimized (bool [https://docs.python.org/3/library/functions.html#bool]) – 


	undefined (Type [https://docs.python.org/3/library/typing.html#typing.Type][Undefined]) – 


	finalize (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[...], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]) – 


	autoescape (Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]], bool [https://docs.python.org/3/library/functions.html#bool]]]) – 


	enable_async (bool [https://docs.python.org/3/library/functions.html#bool]) – 






	Return type:

	Any [https://docs.python.org/3/library/typing.html#typing.Any]






	
globals

	A dict of variables that are available every time the template
is rendered, without needing to pass them during render. This
should not be modified, as depending on how the template was
loaded it may be shared with the environment and other
templates.

Defaults to Environment.globals unless extra values are
passed to Environment.get_template().

Globals are only intended for data that is common to every
render of the template. Specific data should be passed to
render().

See The Global Namespace.






	
name

	The loading name of the template.  If the template was loaded from a
string this is None.






	
filename

	The filename of the template on the file system if it was loaded from
there.  Otherwise this is None.






	
render([context])

	This method accepts the same arguments as the dict constructor:
A dict, a dict subclass or some keyword arguments.  If no arguments
are given the context will be empty.  These two calls do the same:

template.render(knights='that say nih')
template.render({'knights': 'that say nih'})





This will return the rendered template as a string.


	Parameters:

	
	args (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	kwargs (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 






	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
generate([context])

	For very large templates it can be useful to not render the whole
template at once but evaluate each statement after another and yield
piece for piece.  This method basically does exactly that and returns
a generator that yields one item after another as strings.

It accepts the same arguments as render().


	Parameters:

	
	args (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	kwargs (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 






	Return type:

	Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][str [https://docs.python.org/3/library/stdtypes.html#str]]










	
stream([context])

	Works exactly like generate() but returns a
TemplateStream.


	Parameters:

	
	args (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	kwargs (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 






	Return type:

	TemplateStream










	
async render_async([context])

	This works similar to render() but returns a coroutine
that when awaited returns the entire rendered template string.  This
requires the async feature to be enabled.

Example usage:

await template.render_async(knights='that say nih; asynchronously')






	Parameters:

	
	args (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	kwargs (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 






	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
async generate_async([context])

	An async version of generate().  Works very similarly but
returns an async iterator instead.


	Parameters:

	
	args (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	kwargs (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 






	Return type:

	AsyncIterator [https://docs.python.org/3/library/typing.html#typing.AsyncIterator][str [https://docs.python.org/3/library/stdtypes.html#str]]










	
make_module(vars=None, shared=False, locals=None)

	This method works like the module attribute when called
without arguments but it will evaluate the template on every call
rather than caching it.  It’s also possible to provide
a dict which is then used as context.  The arguments are the same
as for the new_context() method.


	Parameters:

	
	vars (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]) – 


	shared (bool [https://docs.python.org/3/library/functions.html#bool]) – 


	locals (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]) – 






	Return type:

	TemplateModule










	
property module: TemplateModule

	The template as module.  This is used for imports in the
template runtime but is also useful if one wants to access
exported template variables from the Python layer:

>>> t = Template('{% macro foo() %}42{% endmacro %}23')
>>> str(t.module)
'23'
>>> t.module.foo() == u'42'
True





This attribute is not available if async mode is enabled.










	
class jinja2.environment.TemplateStream

	A template stream works pretty much like an ordinary python generator
but it can buffer multiple items to reduce the number of total iterations.
Per default the output is unbuffered which means that for every unbuffered
instruction in the template one string is yielded.

If buffering is enabled with a buffer size of 5, five items are combined
into a new string.  This is mainly useful if you are streaming
big templates to a client via WSGI which flushes after each iteration.


	Parameters:

	gen (Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 






	
disable_buffering()

	Disable the output buffering.


	Return type:

	None










	
dump(fp, encoding=None, errors='strict')

	Dump the complete stream into a file or file-like object.
Per default strings are written, if you want to encode
before writing specify an encoding.

Example usage:

Template('Hello {{ name }}!').stream(name='foo').dump('hello.html')






	Parameters:

	
	fp (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], IO [https://docs.python.org/3/library/typing.html#typing.IO]]) – 


	encoding (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 


	errors (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 






	Return type:

	None










	
enable_buffering(size=5)

	Enable buffering.  Buffer size items before yielding them.


	Parameters:

	size (int [https://docs.python.org/3/library/functions.html#int]) – 



	Return type:

	None















Autoescaping


Changelog
Changed in version 2.4.



Jinja now comes with autoescaping support.  As of Jinja 2.9 the
autoescape extension is removed and built-in.  However autoescaping is
not yet enabled by default though this will most likely change in the
future.  It’s recommended to configure a sensible default for
autoescaping.  This makes it possible to enable and disable autoescaping
on a per-template basis (HTML versus text for instance).


	
jinja2.select_autoescape(enabled_extensions=('html', 'htm', 'xml'), disabled_extensions=(), default_for_string=True, default=False)

	Intelligently sets the initial value of autoescaping based on the
filename of the template.  This is the recommended way to configure
autoescaping if you do not want to write a custom function yourself.

If you want to enable it for all templates created from strings or
for all templates with .html and .xml extensions:

from jinja2 import Environment, select_autoescape
env = Environment(autoescape=select_autoescape(
    enabled_extensions=('html', 'xml'),
    default_for_string=True,
))





Example configuration to turn it on at all times except if the template
ends with .txt:

from jinja2 import Environment, select_autoescape
env = Environment(autoescape=select_autoescape(
    disabled_extensions=('txt',),
    default_for_string=True,
    default=True,
))





The enabled_extensions is an iterable of all the extensions that
autoescaping should be enabled for.  Likewise disabled_extensions is
a list of all templates it should be disabled for.  If a template is
loaded from a string then the default from default_for_string is used.
If nothing matches then the initial value of autoescaping is set to the
value of default.

For security reasons this function operates case insensitive.


Changelog
New in version 2.9.




	Parameters:

	
	enabled_extensions (Collection [https://docs.python.org/3/library/typing.html#typing.Collection][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 


	disabled_extensions (Collection [https://docs.python.org/3/library/typing.html#typing.Collection][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 


	default_for_string (bool [https://docs.python.org/3/library/functions.html#bool]) – 


	default (bool [https://docs.python.org/3/library/functions.html#bool]) – 






	Return type:

	Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]], bool [https://docs.python.org/3/library/functions.html#bool]]









Here a recommended setup that enables autoescaping for templates ending
in '.html', '.htm' and '.xml' and disabling it by default
for all other extensions.  You can use the select_autoescape()
function for this:

from jinja2 import Environment, PackageLoader, select_autoescape
env = Environment(autoescape=select_autoescape(['html', 'htm', 'xml']),
                  loader=PackageLoader('mypackage'))





The select_autoescape() function returns a function that
works roughly like this:

def autoescape(template_name):
    if template_name is None:
        return False
    if template_name.endswith(('.html', '.htm', '.xml'))





When implementing a guessing autoescape function, make sure you also
accept None as valid template name.  This will be passed when generating
templates from strings.  You should always configure autoescaping as
defaults in the future might change.

Inside the templates the behaviour can be temporarily changed by using
the autoescape block (see Autoescape Overrides).



Notes on Identifiers

Jinja uses Python naming rules. Valid identifiers can be any combination
of characters accepted by Python.

Filters and tests are looked up in separate namespaces and have slightly
modified identifier syntax.  Filters and tests may contain dots to group
filters and tests by topic.  For example it’s perfectly valid to add a
function into the filter dict and call it to.str.  The regular
expression for filter and test identifiers is
[a-zA-Z_][a-zA-Z0-9_]*(\.[a-zA-Z_][a-zA-Z0-9_]*)*.



Undefined Types

These classes can be used as undefined types.  The Environment
constructor takes an undefined parameter that can be one of those classes
or a custom subclass of Undefined.  Whenever the template engine is
unable to look up a name or access an attribute one of those objects is
created and returned.  Some operations on undefined values are then allowed,
others fail.

The closest to regular Python behavior is the StrictUndefined which
disallows all operations beside testing if it’s an undefined object.


	
class jinja2.Undefined

	The default undefined type.  This undefined type can be printed and
iterated over, but every other access will raise an UndefinedError:

>>> foo = Undefined(name='foo')
>>> str(foo)
''
>>> not foo
True
>>> foo + 42
Traceback (most recent call last):
  ...
jinja2.exceptions.UndefinedError: 'foo' is undefined






	Parameters:

	
	hint (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 


	obj (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	name (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 


	exc (Type [https://docs.python.org/3/library/typing.html#typing.Type][TemplateRuntimeError]) – 









	
_undefined_hint

	Either None or a string with the error message for the
undefined object.






	
_undefined_obj

	Either None or the owner object that caused the undefined object
to be created (for example because an attribute does not exist).






	
_undefined_name

	The name for the undefined variable / attribute or just None
if no such information exists.






	
_undefined_exception

	The exception that the undefined object wants to raise.  This
is usually one of UndefinedError or SecurityError.






	
_fail_with_undefined_error(\*args, \**kwargs)

	When called with any arguments this method raises
_undefined_exception with an error message generated
from the undefined hints stored on the undefined object.










	
class jinja2.ChainableUndefined

	An undefined that is chainable, where both __getattr__ and
__getitem__ return itself rather than raising an
UndefinedError.

>>> foo = ChainableUndefined(name='foo')
>>> str(foo.bar['baz'])
''
>>> foo.bar['baz'] + 42
Traceback (most recent call last):
  ...
jinja2.exceptions.UndefinedError: 'foo' is undefined






Changelog
New in version 2.11.0.




	Parameters:

	
	hint (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 


	obj (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	name (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 


	exc (Type [https://docs.python.org/3/library/typing.html#typing.Type][TemplateRuntimeError]) – 













	
class jinja2.DebugUndefined

	An undefined that returns the debug info when printed.

>>> foo = DebugUndefined(name='foo')
>>> str(foo)
'{{ foo }}'
>>> not foo
True
>>> foo + 42
Traceback (most recent call last):
  ...
jinja2.exceptions.UndefinedError: 'foo' is undefined






	Parameters:

	
	hint (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 


	obj (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	name (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 


	exc (Type [https://docs.python.org/3/library/typing.html#typing.Type][TemplateRuntimeError]) – 













	
class jinja2.StrictUndefined

	An undefined that barks on print and iteration as well as boolean
tests and all kinds of comparisons.  In other words: you can do nothing
with it except checking if it’s defined using the defined test.

>>> foo = StrictUndefined(name='foo')
>>> str(foo)
Traceback (most recent call last):
  ...
jinja2.exceptions.UndefinedError: 'foo' is undefined
>>> not foo
Traceback (most recent call last):
  ...
jinja2.exceptions.UndefinedError: 'foo' is undefined
>>> foo + 42
Traceback (most recent call last):
  ...
jinja2.exceptions.UndefinedError: 'foo' is undefined






	Parameters:

	
	hint (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 


	obj (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	name (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 


	exc (Type [https://docs.python.org/3/library/typing.html#typing.Type][TemplateRuntimeError]) – 












There is also a factory function that can decorate undefined objects to
implement logging on failures:


	
jinja2.make_logging_undefined(logger=None, base=<class 'jinja2.runtime.Undefined'>)

	Given a logger object this returns a new undefined class that will
log certain failures.  It will log iterations and printing.  If no
logger is given a default logger is created.

Example:

logger = logging.getLogger(__name__)
LoggingUndefined = make_logging_undefined(
    logger=logger,
    base=Undefined
)






Changelog
New in version 2.8.




	Parameters:

	
	logger (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][logging.Logger [https://docs.python.org/3/library/logging.html#logging.Logger]]) – the logger to use.  If not provided, a default logger
is created.


	base (Type [https://docs.python.org/3/library/typing.html#typing.Type][Undefined]) – the base class to add logging functionality to.  This
defaults to Undefined.






	Return type:

	Type [https://docs.python.org/3/library/typing.html#typing.Type][Undefined]









Undefined objects are created by calling undefined.


Implementation

Undefined is implemented by overriding the special
__underscore__ methods. For example the default
Undefined class implements __str__ to returns an empty
string, while __int__ and others fail with an exception. To
allow conversion to int by returning 0 you can implement your
own subclass.

class NullUndefined(Undefined):
    def __int__(self):
        return 0

    def __float__(self):
        return 0.0





To disallow a method, override it and raise
_undefined_exception.  Because this is very
common there is the helper method
_fail_with_undefined_error() that raises the error
with the correct information. Here’s a class that works like the
regular Undefined but fails on iteration:

class NonIterableUndefined(Undefined):
    def __iter__(self):
        self._fail_with_undefined_error()









The Context


	
class jinja2.runtime.Context

	The template context holds the variables of a template.  It stores the
values passed to the template and also the names the template exports.
Creating instances is neither supported nor useful as it’s created
automatically at various stages of the template evaluation and should not
be created by hand.

The context is immutable.  Modifications on parent must not
happen and modifications on vars are allowed from generated
template code only.  Template filters and global functions marked as
pass_context() get the active context passed as first argument
and are allowed to access the context read-only.

The template context supports read only dict operations (get,
keys, values, items, iterkeys, itervalues, iteritems,
__getitem__, __contains__).  Additionally there is a resolve()
method that doesn’t fail with a KeyError but returns an
Undefined object for missing variables.


	Parameters:

	
	environment (Environment) – 


	parent (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]) – 


	name (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 


	blocks (Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Context], Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][str [https://docs.python.org/3/library/stdtypes.html#str]]]]) – 


	globals (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][MutableMapping [https://docs.python.org/3/library/typing.html#typing.MutableMapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]) – 









	
parent

	A dict of read only, global variables the template looks up.  These
can either come from another Context, from the
Environment.globals or Template.globals or points
to a dict created by combining the globals with the variables
passed to the render function.  It must not be altered.






	
vars

	The template local variables.  This list contains environment and
context functions from the parent scope as well as local
modifications and exported variables from the template.  The template
will modify this dict during template evaluation but filters and
context functions are not allowed to modify it.






	
environment

	The environment that loaded the template.






	
exported_vars

	This set contains all the names the template exports.  The values for
the names are in the vars dict.  In order to get a copy of the
exported variables as dict, get_exported() can be used.






	
name

	The load name of the template owning this context.






	
blocks

	A dict with the current mapping of blocks in the template.  The keys
in this dict are the names of the blocks, and the values a list of
blocks registered.  The last item in each list is the current active
block (latest in the inheritance chain).






	
eval_ctx

	The current Evaluation Context.






	
call(callable, \*args, \**kwargs)

	Call the callable with the arguments and keyword arguments
provided but inject the active context or environment as first
argument if the callable has pass_context() or
pass_environment().


	Parameters:

	
	_Context__obj (Callable [https://docs.python.org/3/library/typing.html#typing.Callable]) – 


	args (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	kwargs (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 






	Return type:

	Union [https://docs.python.org/3/library/typing.html#typing.Union][Any [https://docs.python.org/3/library/typing.html#typing.Any], Undefined]










	
get(key, default=None)

	Look up a variable by name, or return a default if the key is
not found.


	Parameters:

	
	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The variable name to look up.


	default (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Any [https://docs.python.org/3/library/typing.html#typing.Any]]) – The value to return if the key is not found.






	Return type:

	Any [https://docs.python.org/3/library/typing.html#typing.Any]










	
get_all()

	Return the complete context as dict including the exported
variables.  For optimizations reasons this might not return an
actual copy so be careful with using it.


	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]










	
get_exported()

	Get a new dict with the exported variables.


	Return type:

	Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]










	
resolve(key)

	Look up a variable by name, or return an Undefined
object if the key is not found.

If you need to add custom behavior, override
resolve_or_missing(), not this method. The various lookup
functions use that method, not this one.


	Parameters:

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The variable name to look up.



	Return type:

	Union [https://docs.python.org/3/library/typing.html#typing.Union][Any [https://docs.python.org/3/library/typing.html#typing.Any], Undefined]










	
resolve_or_missing(key)

	Look up a variable by name, or return a missing sentinel
if the key is not found.

Override this method to add custom lookup behavior.
resolve(), get(), and __getitem__() use this
method. Don’t call this method directly.


	Parameters:

	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – The variable name to look up.



	Return type:

	Any [https://docs.python.org/3/library/typing.html#typing.Any]













The context is immutable, it prevents modifications, and if it is
modified somehow despite that those changes may not show up. For
performance, Jinja does not use the context as data storage for, only as
a primary data source. Variables that the template does not define are
looked up in the context, but variables the template does define are
stored locally.

Instead of modifying the context directly, a function should return
a value that can be assigned to a variable within the template itself.

{% set comments = get_latest_comments() %}







Loaders

Loaders are responsible for loading templates from a resource such as the
file system.  The environment will keep the compiled modules in memory like
Python’s sys.modules.  Unlike sys.modules however this cache is limited in
size by default and templates are automatically reloaded.
All loaders are subclasses of BaseLoader.  If you want to create your
own loader, subclass BaseLoader and override get_source.


	
class jinja2.BaseLoader

	Baseclass for all loaders.  Subclass this and override get_source to
implement a custom loading mechanism.  The environment provides a
get_template method that calls the loader’s load method to get the
Template object.

A very basic example for a loader that looks up templates on the file
system could look like this:

from jinja2 import BaseLoader, TemplateNotFound
from os.path import join, exists, getmtime

class MyLoader(BaseLoader):

    def __init__(self, path):
        self.path = path

    def get_source(self, environment, template):
        path = join(self.path, template)
        if not exists(path):
            raise TemplateNotFound(template)
        mtime = getmtime(path)
        with open(path) as f:
            source = f.read()
        return source, path, lambda: mtime == getmtime(path)






	
get_source(environment, template)

	Get the template source, filename and reload helper for a template.
It’s passed the environment and template name and has to return a
tuple in the form (source, filename, uptodate) or raise a
TemplateNotFound error if it can’t locate the template.

The source part of the returned tuple must be the source of the
template as a string. The filename should be the name of the
file on the filesystem if it was loaded from there, otherwise
None. The filename is used by Python for the tracebacks
if no loader extension is used.

The last item in the tuple is the uptodate function.  If auto
reloading is enabled it’s always called to check if the template
changed.  No arguments are passed so the function must store the
old state somewhere (for example in a closure).  If it returns False
the template will be reloaded.


	Parameters:

	
	environment (Environment) – 


	template (str [https://docs.python.org/3/library/stdtypes.html#str]) – 






	Return type:

	Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]], Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[], bool [https://docs.python.org/3/library/functions.html#bool]]]]










	
load(environment, name, globals=None)

	Loads a template.  This method looks up the template in the cache
or loads one by calling get_source().  Subclasses should not
override this method as loaders working on collections of other
loaders (such as PrefixLoader or ChoiceLoader)
will not call this method but get_source directly.


	Parameters:

	
	environment (Environment) – 


	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	globals (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][MutableMapping [https://docs.python.org/3/library/typing.html#typing.MutableMapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]) – 






	Return type:

	Template













Here a list of the builtin loaders Jinja provides:


	
class jinja2.FileSystemLoader(searchpath, encoding='utf-8', followlinks=False)

	Load templates from a directory in the file system.

The path can be relative or absolute. Relative paths are relative to
the current working directory.

loader = FileSystemLoader("templates")





A list of paths can be given. The directories will be searched in
order, stopping at the first matching template.

loader = FileSystemLoader(["/override/templates", "/default/templates"])






	Parameters:

	
	searchpath (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], PathLike [https://docs.python.org/3/library/os.html#os.PathLike], Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], PathLike [https://docs.python.org/3/library/os.html#os.PathLike]]]]) – A path, or list of paths, to the directory that
contains the templates.


	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – Use this encoding to read the text from template
files.


	followlinks (bool [https://docs.python.org/3/library/functions.html#bool]) – Follow symbolic links in the path.









Changelog
Changed in version 2.8: Added the followlinks parameter.








	
class jinja2.PackageLoader(package_name, package_path='templates', encoding='utf-8')

	Load templates from a directory in a Python package.


	Parameters:

	
	package_name (str [https://docs.python.org/3/library/stdtypes.html#str]) – Import name of the package that contains the
template directory.


	package_path (str [https://docs.python.org/3/library/stdtypes.html#str]) – Directory within the imported package that
contains the templates.


	encoding (str [https://docs.python.org/3/library/stdtypes.html#str]) – Encoding of template files.








The following example looks up templates in the pages directory
within the project.ui package.

loader = PackageLoader("project.ui", "pages")





Only packages installed as directories (standard pip behavior) or
zip/egg files (less common) are supported. The Python API for
introspecting data in packages is too limited to support other
installation methods the way this loader requires.

There is limited support for PEP 420 [https://peps.python.org/pep-0420/] namespace packages. The
template directory is assumed to only be in one namespace
contributor. Zip files contributing to a namespace are not
supported.


Changelog
Changed in version 3.0: No longer uses setuptools as a dependency.




Changed in version 3.0: Limited PEP 420 namespace package support.








	
class jinja2.DictLoader(mapping)

	Loads a template from a Python dict mapping template names to
template source.  This loader is useful for unittesting:

>>> loader = DictLoader({'index.html': 'source here'})





Because auto reloading is rarely useful this is disabled per default.


	Parameters:

	mapping (Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]) – 










	
class jinja2.FunctionLoader(load_func)

	A loader that is passed a function which does the loading.  The
function receives the name of the template and has to return either
a string with the template source, a tuple in the form (source,
filename, uptodatefunc) or None if the template does not exist.

>>> def load_template(name):
...     if name == 'index.html':
...         return '...'
...
>>> loader = FunctionLoader(load_template)





The uptodatefunc is a function that is called if autoreload is enabled
and has to return True if the template is still up to date.  For more
details have a look at BaseLoader.get_source() which has the same
return value.


	Parameters:

	load_func (Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[str [https://docs.python.org/3/library/stdtypes.html#str]], Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]], Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[], bool [https://docs.python.org/3/library/functions.html#bool]]]]]]]) – 










	
class jinja2.PrefixLoader(mapping, delimiter='/')

	A loader that is passed a dict of loaders where each loader is bound
to a prefix.  The prefix is delimited from the template by a slash per
default, which can be changed by setting the delimiter argument to
something else:

loader = PrefixLoader({
    'app1':     PackageLoader('mypackage.app1'),
    'app2':     PackageLoader('mypackage.app2')
})





By loading 'app1/index.html' the file from the app1 package is loaded,
by loading 'app2/index.html' the file from the second.


	Parameters:

	
	mapping (Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], BaseLoader]) – 


	delimiter (str [https://docs.python.org/3/library/stdtypes.html#str]) – 













	
class jinja2.ChoiceLoader(loaders)

	This loader works like the PrefixLoader just that no prefix is
specified.  If a template could not be found by one loader the next one
is tried.

>>> loader = ChoiceLoader([
...     FileSystemLoader('/path/to/user/templates'),
...     FileSystemLoader('/path/to/system/templates')
... ])





This is useful if you want to allow users to override builtin templates
from a different location.


	Parameters:

	loaders (Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][BaseLoader]) – 










	
class jinja2.ModuleLoader(path)

	This loader loads templates from precompiled templates.

Example usage:

>>> loader = ChoiceLoader([
...     ModuleLoader('/path/to/compiled/templates'),
...     FileSystemLoader('/path/to/templates')
... ])





Templates can be precompiled with Environment.compile_templates().


	Parameters:

	path (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], PathLike [https://docs.python.org/3/library/os.html#os.PathLike], Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], PathLike [https://docs.python.org/3/library/os.html#os.PathLike]]]]) – 











Bytecode Cache

Jinja 2.1 and higher support external bytecode caching.  Bytecode caches make
it possible to store the generated bytecode on the file system or a different
location to avoid parsing the templates on first use.

This is especially useful if you have a web application that is initialized on
the first request and Jinja compiles many templates at once which slows down
the application.

To use a bytecode cache, instantiate it and pass it to the Environment.


	
class jinja2.BytecodeCache

	To implement your own bytecode cache you have to subclass this class
and override load_bytecode() and dump_bytecode().  Both of
these methods are passed a Bucket.

A very basic bytecode cache that saves the bytecode on the file system:

from os import path

class MyCache(BytecodeCache):

    def __init__(self, directory):
        self.directory = directory

    def load_bytecode(self, bucket):
        filename = path.join(self.directory, bucket.key)
        if path.exists(filename):
            with open(filename, 'rb') as f:
                bucket.load_bytecode(f)

    def dump_bytecode(self, bucket):
        filename = path.join(self.directory, bucket.key)
        with open(filename, 'wb') as f:
            bucket.write_bytecode(f)





A more advanced version of a filesystem based bytecode cache is part of
Jinja.


	
clear()

	Clears the cache.  This method is not used by Jinja but should be
implemented to allow applications to clear the bytecode cache used
by a particular environment.


	Return type:

	None










	
dump_bytecode(bucket)

	Subclasses have to override this method to write the bytecode
from a bucket back to the cache.  If it unable to do so it must not
fail silently but raise an exception.


	Parameters:

	bucket (Bucket) – 



	Return type:

	None










	
load_bytecode(bucket)

	Subclasses have to override this method to load bytecode into a
bucket.  If they are not able to find code in the cache for the
bucket, it must not do anything.


	Parameters:

	bucket (Bucket) – 



	Return type:

	None














	
class jinja2.bccache.Bucket(environment, key, checksum)

	Buckets are used to store the bytecode for one template.  It’s created
and initialized by the bytecode cache and passed to the loading functions.

The buckets get an internal checksum from the cache assigned and use this
to automatically reject outdated cache material.  Individual bytecode
cache subclasses don’t have to care about cache invalidation.


	Parameters:

	
	environment (Environment) – 


	key (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	checksum (str [https://docs.python.org/3/library/stdtypes.html#str]) – 









	
environment

	The Environment that created the bucket.






	
key

	The unique cache key for this bucket






	
code

	The bytecode if it’s loaded, otherwise None.






	
bytecode_from_string(string)

	Load bytecode from bytes.


	Parameters:

	string (bytes [https://docs.python.org/3/library/stdtypes.html#bytes]) – 



	Return type:

	None










	
bytecode_to_string()

	Return the bytecode as bytes.


	Return type:

	bytes [https://docs.python.org/3/library/stdtypes.html#bytes]










	
load_bytecode(f)

	Loads bytecode from a file or file like object.


	Parameters:

	f (BinaryIO [https://docs.python.org/3/library/typing.html#typing.BinaryIO]) – 



	Return type:

	None










	
reset()

	Resets the bucket (unloads the bytecode).


	Return type:

	None










	
write_bytecode(f)

	Dump the bytecode into the file or file like object passed.


	Parameters:

	f (IO [https://docs.python.org/3/library/typing.html#typing.IO][bytes [https://docs.python.org/3/library/stdtypes.html#bytes]]) – 



	Return type:

	None













Builtin bytecode caches:


	
class jinja2.FileSystemBytecodeCache(directory=None, pattern='__jinja2_%s.cache')

	A bytecode cache that stores bytecode on the filesystem.  It accepts
two arguments: The directory where the cache items are stored and a
pattern string that is used to build the filename.

If no directory is specified a default cache directory is selected.  On
Windows the user’s temp directory is used, on UNIX systems a directory
is created for the user in the system temp directory.

The pattern can be used to have multiple separate caches operate on the
same directory.  The default pattern is '__jinja2_%s.cache'.  %s
is replaced with the cache key.

>>> bcc = FileSystemBytecodeCache('/tmp/jinja_cache', '%s.cache')





This bytecode cache supports clearing of the cache using the clear method.


	Parameters:

	
	directory (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 


	pattern (str [https://docs.python.org/3/library/stdtypes.html#str]) – 













	
class jinja2.MemcachedBytecodeCache(client, prefix='jinja2/bytecode/', timeout=None, ignore_memcache_errors=True)

	This class implements a bytecode cache that uses a memcache cache for
storing the information.  It does not enforce a specific memcache library
(tummy’s memcache or cmemcache) but will accept any class that provides
the minimal interface required.

Libraries compatible with this class:


	cachelib [https://github.com/pallets/cachelib]


	python-memcached [https://pypi.org/project/python-memcached/]




(Unfortunately the django cache interface is not compatible because it
does not support storing binary data, only text. You can however pass
the underlying cache client to the bytecode cache which is available
as django.core.cache.cache._client.)

The minimal interface for the client passed to the constructor is this:


	Parameters:

	
	client (_MemcachedClient) – 


	prefix (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	timeout (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – 


	ignore_memcache_errors (bool [https://docs.python.org/3/library/functions.html#bool]) – 









	
class MinimalClientInterface

	
	
set(key, value[, timeout])

	Stores the bytecode in the cache.  value is a string and
timeout the timeout of the key.  If timeout is not provided
a default timeout or no timeout should be assumed, if it’s
provided it’s an integer with the number of seconds the cache
item should exist.






	
get(key)

	Returns the value for the cache key.  If the item does not
exist in the cache the return value must be None.









The other arguments to the constructor are the prefix for all keys that
is added before the actual cache key and the timeout for the bytecode in
the cache system.  We recommend a high (or no) timeout.

This bytecode cache does not support clearing of used items in the cache.
The clear method is a no-operation function.


Changelog
New in version 2.7: Added support for ignoring memcache errors through the
ignore_memcache_errors parameter.









Async Support


Changelog
New in version 2.9.



Jinja supports the Python async and await syntax. For the
template designer, this support (when enabled) is entirely transparent,
templates continue to look exactly the same. However, developers should
be aware of the implementation as it affects what types of APIs you can
use.

By default, async support is disabled. Enabling it will cause the
environment to compile different code behind the scenes in order to
handle async and sync code in an asyncio event loop. This has the
following implications:


	Template rendering requires an event loop to be available to the
current thread. asyncio.get_running_loop() [https://docs.python.org/3/library/asyncio-eventloop.html#asyncio.get_running_loop] must return an
event loop.


	The compiled code uses await for functions and attributes, and
uses async for loops. In order to support using both async and
sync functions in this context, a small wrapper is placed around
all calls and access, which adds overhead compared to purely async
code.


	Sync methods and filters become wrappers around their corresponding
async implementations where needed. For example, render invokes
async_render, and |map supports async iterables.




Awaitable objects can be returned from functions in templates and any
function call in a template will automatically await the result. The
await you would normally add in Python is implied. For example, you
can provide a method that asynchronously loads data from a database, and
from the template designer’s point of view it can be called like any
other function.



Policies

Starting with Jinja 2.9 policies can be configured on the environment
which can slightly influence how filters and other template constructs
behave.  They can be configured with the
policies attribute.

Example:

env.policies['urlize.rel'] = 'nofollow noopener'






	truncate.leeway:
	Configures the leeway default for the truncate filter.  Leeway as
introduced in 2.9 but to restore compatibility with older templates
it can be configured to 0 to get the old behavior back.  The default
is 5.



	urlize.rel:
	A string that defines the items for the rel attribute of generated
links with the urlize filter.  These items are always added.  The
default is noopener.



	urlize.target:
	The default target that is issued for links from the urlize filter
if no other target is defined by the call explicitly.



	urlize.extra_schemes:
	Recognize URLs that start with these schemes in addition to the
default http://, https://, and mailto:.



	json.dumps_function:
	If this is set to a value other than None then the tojson filter
will dump with this function instead of the default one.  Note that
this function should accept arbitrary extra arguments which might be
passed in the future from the filter.  Currently the only argument
that might be passed is indent.  The default dump function is
json.dumps.



	json.dumps_kwargs:
	Keyword arguments to be passed to the dump function.  The default is
{'sort_keys': True}.






	ext.i18n.trimmed:
	If this is set to True, {% trans %} blocks of the
i18n Extension will always unify linebreaks and surrounding
whitespace as if the trimmed modifier was used.







Utilities

These helper functions and classes are useful if you add custom filters or
functions to a Jinja environment.


	
jinja2.pass_context(f)

	Pass the Context as the first argument
to the decorated function when called while rendering a template.

Can be used on functions, filters, and tests.

If only Context.eval_context is needed, use
pass_eval_context(). If only Context.environment is
needed, use pass_environment().


Changelog
New in version 3.0.0: Replaces contextfunction and contextfilter.




	Parameters:

	f (F) – 



	Return type:

	F










	
jinja2.pass_eval_context(f)

	Pass the EvalContext as the first argument
to the decorated function when called while rendering a template.
See Evaluation Context.

Can be used on functions, filters, and tests.

If only EvalContext.environment is needed, use
pass_environment().


Changelog
New in version 3.0.0: Replaces evalcontextfunction and evalcontextfilter.




	Parameters:

	f (F) – 



	Return type:

	F










	
jinja2.pass_environment(f)

	Pass the Environment as the first argument to
the decorated function when called while rendering a template.

Can be used on functions, filters, and tests.


Changelog
New in version 3.0.0: Replaces environmentfunction and environmentfilter.




	Parameters:

	f (F) – 



	Return type:

	F










	
jinja2.clear_caches()

	Jinja keeps internal caches for environments and lexers.  These are
used so that Jinja doesn’t have to recreate environments and lexers all
the time.  Normally you don’t have to care about that but if you are
measuring memory consumption you may want to clean the caches.


	Return type:

	None










	
jinja2.is_undefined(obj)

	Check if the object passed is undefined.  This does nothing more than
performing an instance check against Undefined but looks nicer.
This can be used for custom filters or tests that want to react to
undefined variables.  For example a custom default filter can look like
this:

def default(var, default=''):
    if is_undefined(var):
        return default
    return var






	Parameters:

	obj (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 



	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]











Exceptions


	
exception jinja2.TemplateError(message=None)

	Baseclass for all template errors.


	Parameters:

	message (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 



	Return type:

	None










	
exception jinja2.UndefinedError(message=None)

	Raised if a template tries to operate on Undefined.


	Parameters:

	message (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 



	Return type:

	None










	
exception jinja2.TemplateNotFound(name, message=None)

	Raised if a template does not exist.


Changelog
Changed in version 2.11: If the given name is Undefined and no message was
provided, an UndefinedError is raised.




	Parameters:

	
	name (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Undefined]]) – 


	message (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 






	Return type:

	None










	
exception jinja2.TemplatesNotFound(names=(), message=None)

	Like TemplateNotFound but raised if multiple templates
are selected.  This is a subclass of TemplateNotFound
exception, so just catching the base exception will catch both.


Changelog
Changed in version 2.11: If a name in the list of names is Undefined, a message
about it being undefined is shown rather than the empty string.




New in version 2.2.




	Parameters:

	
	names (Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Undefined]]) – 


	message (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 






	Return type:

	None










	
exception jinja2.TemplateSyntaxError(message, lineno, name=None, filename=None)

	Raised to tell the user that there is a problem with the template.


	Parameters:

	
	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	lineno (int [https://docs.python.org/3/library/functions.html#int]) – 


	name (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 


	filename (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 






	Return type:

	None






	
message

	The error message.






	
lineno

	The line number where the error occurred.






	
name

	The load name for the template.






	
filename

	The filename that loaded the template in the encoding of the
file system (most likely utf-8, or mbcs on Windows systems).










	
exception jinja2.TemplateRuntimeError(message=None)

	A generic runtime error in the template engine.  Under some situations
Jinja may raise this exception.


	Parameters:

	message (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 



	Return type:

	None










	
exception jinja2.TemplateAssertionError(message, lineno, name=None, filename=None)

	Like a template syntax error, but covers cases where something in the
template caused an error at compile time that wasn’t necessarily caused
by a syntax error.  However it’s a direct subclass of
TemplateSyntaxError and has the same attributes.


	Parameters:

	
	message (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	lineno (int [https://docs.python.org/3/library/functions.html#int]) – 


	name (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 


	filename (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 






	Return type:

	None











Custom Filters

Filters are Python functions that take the value to the left of the
filter as the first argument and produce a new value. Arguments passed
to the filter are passed after the value.

For example, the filter {{ 42|myfilter(23) }} is called behind the
scenes as myfilter(42, 23).

Jinja comes with some built-in filters. To use
a custom filter, write a function that takes at least a value
argument, then register it in Environment.filters.

Here’s a filter that formats datetime objects:

def datetime_format(value, format="%H:%M %d-%m-%y"):
    return value.strftime(format)

environment.filters["datetime_format"] = datetime_format





Now it can be used in templates:

{{ article.pub_date|datetimeformat }}
{{ article.pub_date|datetimeformat("%B %Y") }}





Some decorators are available to tell Jinja to pass extra information to
the filter. The object is passed as the first argument, making the value
being filtered the second argument.


	pass_environment() passes the Environment.


	pass_eval_context() passes the Evaluation Context.


	pass_context() passes the current
Context.




Here’s a filter that converts line breaks into HTML <br> and <p>
tags. It uses the eval context to check if autoescape is currently
enabled before escaping the input and marking the output safe.

import re
from jinja2 import pass_eval_context
from markupsafe import Markup, escape

@pass_eval_context
def nl2br(eval_ctx, value):
    br = "<br>\n"

    if eval_ctx.autoescape:
        value = escape(value)
        br = Markup(br)

    result = "\n\n".join(
        f"<p>{br.join(p.splitlines())}<\p>"
        for p in re.split(r"(?:\r\n|\r(?!\n)|\n){2,}", value)
    )
    return Markup(result) if autoescape else result







Custom Tests

Test are Python functions that take the value to the left of the test as
the first argument, and return True or False. Arguments passed
to the test are passed after the value.

For example, the test {{ 42 is even }} is called behind the scenes
as is_even(42).

Jinja comes with some built-in tests. To use a
custom tests, write a function that takes at least a value argument,
then register it in Environment.tests.

Here’s a test that checks if a value is a prime number:

import math

def is_prime(n):
    if n == 2:
        return True

    for i in range(2, int(math.ceil(math.sqrt(n))) + 1):
        if n % i == 0:
            return False

    return True

environment.tests["prime"] = is_prime





Now it can be used in templates:

{% if value is prime %}
    {{ value }} is a prime number
{% else %}
    {{ value }} is not a prime number
{% endif %}





Some decorators are available to tell Jinja to pass extra information to
the filter. The object is passed as the first argument, making the value
being filtered the second argument.


	pass_environment() passes the Environment.


	pass_eval_context() passes the Evaluation Context.


	pass_context() passes the current
Context.






Evaluation Context

The evaluation context (short eval context or eval ctx) makes it
possible to activate and deactivate compiled features at runtime.

Currently it is only used to enable and disable automatic escaping, but
it can be used by extensions as well.

The autoescape setting should be checked on the evaluation context,
not the environment. The evaluation context will have the computed value
for the current template.

Instead of pass_environment:

@pass_environment
def filter(env, value):
    result = do_something(value)

    if env.autoescape:
        result = Markup(result)

    return result





Use pass_eval_context if you only need the setting:

@pass_eval_context
def filter(eval_ctx, value):
    result = do_something(value)

    if eval_ctx.autoescape:
        result = Markup(result)

    return result





Or use pass_context if you need other context behavior as well:

@pass_context
def filter(context, value):
    result = do_something(value)

    if context.eval_ctx.autoescape:
        result = Markup(result)

    return result





The evaluation context must not be modified at runtime.  Modifications
must only happen with a nodes.EvalContextModifier and
nodes.ScopedEvalContextModifier from an extension, not on the
eval context object itself.


	
class jinja2.nodes.EvalContext(environment, template_name=None)

	Holds evaluation time information.  Custom attributes can be attached
to it in extensions.


	Parameters:

	
	environment (Environment) – 


	template_name (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 









	
autoescape

	True or False depending on if autoescaping is active or not.






	
volatile

	True if the compiler cannot evaluate some expressions at compile
time.  At runtime this should always be False.











The Global Namespace

The global namespace stores variables and functions that should be
available without needing to pass them to Template.render(). They
are also available to templates that are imported or included without
context. Most applications should only use Environment.globals.

Environment.globals are intended for data that is common to all
templates loaded by that environment. Template.globals are
intended for data that is common to all renders of that template, and
default to Environment.globals unless they’re given in
Environment.get_template(), etc. Data that is specific to a
render should be passed as context to Template.render().

Only one set of globals is used during any specific rendering. If
templates A and B both have template globals, and B extends A, then
only B’s globals are used for both when using b.render().

Environment globals should not be changed after loading any templates,
and template globals should not be changed at any time after loading the
template. Changing globals after loading a template will result in
unexpected behavior as they may be shared between the environment and
other templates.



Low Level API

The low level API exposes functionality that can be useful to understand some
implementation details, debugging purposes or advanced extension techniques.  Unless you know exactly what you are doing we
don’t recommend using any of those.


	
Environment.lex(source, name=None, filename=None)

	Lex the given sourcecode and return a generator that yields
tokens as tuples in the form (lineno, token_type, value).
This can be useful for extension development
and debugging templates.

This does not perform preprocessing.  If you want the preprocessing
of the extensions to be applied you have to filter source through
the preprocess() method.


	Parameters:

	
	source (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	name (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 


	filename (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 






	Return type:

	Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str], str [https://docs.python.org/3/library/stdtypes.html#str]]]










	
Environment.parse(source, name=None, filename=None)

	Parse the sourcecode and return the abstract syntax tree.  This
tree of nodes is used by the compiler to convert the template into
executable source- or bytecode.  This is useful for debugging or to
extract information from templates.

If you are developing Jinja extensions
this gives you a good overview of the node tree generated.


	Parameters:

	
	source (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	name (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 


	filename (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 






	Return type:

	Template










	
Environment.preprocess(source, name=None, filename=None)

	Preprocesses the source with all extensions.  This is automatically
called for all parsing and compiling methods but not for lex()
because there you usually only want the actual source tokenized.


	Parameters:

	
	source (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	name (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 


	filename (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 






	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]










	
Template.new_context(vars=None, shared=False, locals=None)

	Create a new Context for this template.  The vars
provided will be passed to the template.  Per default the globals
are added to the context.  If shared is set to True the data
is passed as is to the context without adding the globals.

locals can be a dict of local variables for internal usage.


	Parameters:

	
	vars (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]) – 


	shared (bool [https://docs.python.org/3/library/functions.html#bool]) – 


	locals (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Mapping [https://docs.python.org/3/library/typing.html#typing.Mapping][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]) – 






	Return type:

	Context










	
Template.root_render_func(context)

	This is the low level render function.  It’s passed a Context
that has to be created by new_context() of the same template or
a compatible template.  This render function is generated by the
compiler from the template code and returns a generator that yields
strings.

If an exception in the template code happens the template engine will
not rewrite the exception but pass through the original one.  As a
matter of fact this function should only be called from within a
render() / generate() / stream() call.






	
Template.blocks

	A dict of block render functions.  Each of these functions works exactly
like the root_render_func() with the same limitations.






	
Template.is_up_to_date

	This attribute is False if there is a newer version of the template
available, otherwise True.






Note

The low-level API is fragile.  Future Jinja versions will try not to
change it in a backwards incompatible way but modifications in the Jinja
core may shine through.  For example if Jinja introduces a new AST node
in later versions that may be returned by parse().





The Meta API


Changelog
New in version 2.2.



The meta API returns some information about abstract syntax trees that
could help applications to implement more advanced template concepts.  All
the functions of the meta API operate on an abstract syntax tree as
returned by the Environment.parse() method.


	
jinja2.meta.find_undeclared_variables(ast)

	Returns a set of all variables in the AST that will be looked up from
the context at runtime.  Because at compile time it’s not known which
variables will be used depending on the path the execution takes at
runtime, all variables are returned.

>>> from jinja2 import Environment, meta
>>> env = Environment()
>>> ast = env.parse('{% set foo = 42 %}{{ bar + foo }}')
>>> meta.find_undeclared_variables(ast) == {'bar'}
True






Implementation

Internally the code generator is used for finding undeclared variables.
This is good to know because the code generator might raise a
TemplateAssertionError during compilation and as a matter of
fact this function can currently raise that exception as well.




	Parameters:

	ast (Template) – 



	Return type:

	Set [https://docs.python.org/3/library/typing.html#typing.Set][str [https://docs.python.org/3/library/stdtypes.html#str]]










	
jinja2.meta.find_referenced_templates(ast)

	Finds all the referenced templates from the AST.  This will return an
iterator over all the hardcoded template extensions, inclusions and
imports.  If dynamic inheritance or inclusion is used, None will be
yielded.

>>> from jinja2 import Environment, meta
>>> env = Environment()
>>> ast = env.parse('{% extends "layout.html" %}{% include helper %}')
>>> list(meta.find_referenced_templates(ast))
['layout.html', None]





This function is useful for dependency tracking.  For example if you want
to rebuild parts of the website after a layout template has changed.


	Parameters:

	ast (Template) – 



	Return type:

	Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]]













            

          

      

      

    

  

    
      
          
            
  
Sandbox

The Jinja sandbox can be used to render untrusted templates. Access to
attributes, method calls, operators, mutating data structures, and
string formatting can be intercepted and prohibited.

>>> from jinja2.sandbox import SandboxedEnvironment
>>> env = SandboxedEnvironment()
>>> func = lambda: "Hello, Sandbox!"
>>> env.from_string("{{ func() }}").render(func=func)
'Hello, Sandbox!'
>>> env.from_string("{{ func.__code__.co_code }}").render(func=func)
Traceback (most recent call last):
  ...
SecurityError: access to attribute '__code__' of 'function' object is unsafe.





A sandboxed environment can be useful, for example, to allow users of an
internal reporting system to create custom emails. You would document
what data is available in the templates, then the user would write a
template using that information. Your code would generate the report
data and pass it to the user’s sandboxed template to render.


Security Considerations

The sandbox alone is not a solution for perfect security. Keep these
things in mind when using the sandbox.

Templates can still raise errors when compiled or rendered. Your code
should attempt to catch errors instead of crashing.

It is possible to construct a relatively small template that renders to
a very large amount of output, which could correspond to a high use of
CPU or memory. You should run your application with limits on resources
such as CPU and memory to mitigate this.

Jinja only renders text, it does not understand, for example, JavaScript
code. Depending on how the rendered template will be used, you may need
to do other postprocessing to restrict the output.

Pass only the data that is relevant to the template. Avoid passing
global data, or objects with methods that have side effects. By default
the sandbox prevents private and internal attribute access. You can
override is_safe_attribute() to further
restrict attributes access. Decorate methods with unsafe() to
prevent calling them from templates when passing objects as data. Use
ImmutableSandboxedEnvironment to prevent modifying lists and
dictionaries.



API


	
class jinja2.sandbox.SandboxedEnvironment([options])

	The sandboxed environment.  It works like the regular environment but
tells the compiler to generate sandboxed code.  Additionally subclasses of
this environment may override the methods that tell the runtime what
attributes or functions are safe to access.

If the template tries to access insecure code a SecurityError is
raised.  However also other exceptions may occur during the rendering so
the caller has to ensure that all exceptions are caught.


	Parameters:

	
	args (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	kwargs (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 









	
call_binop(context, operator, left, right)

	For intercepted binary operator calls (intercepted_binops())
this function is executed instead of the builtin operator.  This can
be used to fine tune the behavior of certain operators.


Changelog
New in version 2.6.




	Parameters:

	
	context (Context) – 


	operator (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	left (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	right (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 






	Return type:

	Any [https://docs.python.org/3/library/typing.html#typing.Any]










	
call_unop(context, operator, arg)

	For intercepted unary operator calls (intercepted_unops())
this function is executed instead of the builtin operator.  This can
be used to fine tune the behavior of certain operators.


Changelog
New in version 2.6.




	Parameters:

	
	context (Context) – 


	operator (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	arg (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 






	Return type:

	Any [https://docs.python.org/3/library/typing.html#typing.Any]










	
default_binop_table: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Any [https://docs.python.org/3/library/typing.html#typing.Any], Any [https://docs.python.org/3/library/typing.html#typing.Any]], Any [https://docs.python.org/3/library/typing.html#typing.Any]]] = {'%': <built-in function mod>, '*': <built-in function mul>, '**': <built-in function pow>, '+': <built-in function add>, '-': <built-in function sub>, '/': <built-in function truediv>, '//': <built-in function floordiv>}

	default callback table for the binary operators.  A copy of this is
available on each instance of a sandboxed environment as
binop_table






	
default_unop_table: Dict [https://docs.python.org/3/library/typing.html#typing.Dict][str [https://docs.python.org/3/library/stdtypes.html#str], Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Any [https://docs.python.org/3/library/typing.html#typing.Any]], Any [https://docs.python.org/3/library/typing.html#typing.Any]]] = {'+': <built-in function pos>, '-': <built-in function neg>}

	default callback table for the unary operators.  A copy of this is
available on each instance of a sandboxed environment as
unop_table






	
intercepted_binops: FrozenSet [https://docs.python.org/3/library/typing.html#typing.FrozenSet][str [https://docs.python.org/3/library/stdtypes.html#str]] = frozenset({})

	a set of binary operators that should be intercepted.  Each operator
that is added to this set (empty by default) is delegated to the
call_binop() method that will perform the operator.  The default
operator callback is specified by binop_table.

The following binary operators are interceptable:
//, %, +, *, -, /, and **

The default operation form the operator table corresponds to the
builtin function.  Intercepted calls are always slower than the native
operator call, so make sure only to intercept the ones you are
interested in.


Changelog
New in version 2.6.








	
intercepted_unops: FrozenSet [https://docs.python.org/3/library/typing.html#typing.FrozenSet][str [https://docs.python.org/3/library/stdtypes.html#str]] = frozenset({})

	a set of unary operators that should be intercepted.  Each operator
that is added to this set (empty by default) is delegated to the
call_unop() method that will perform the operator.  The default
operator callback is specified by unop_table.

The following unary operators are interceptable: +, -

The default operation form the operator table corresponds to the
builtin function.  Intercepted calls are always slower than the native
operator call, so make sure only to intercept the ones you are
interested in.


Changelog
New in version 2.6.








	
is_safe_attribute(obj, attr, value)

	The sandboxed environment will call this method to check if the
attribute of an object is safe to access.  Per default all attributes
starting with an underscore are considered private as well as the
special attributes of internal python objects as returned by the
is_internal_attribute() function.


	Parameters:

	
	obj (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	value (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 






	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]










	
is_safe_callable(obj)

	Check if an object is safely callable. By default callables
are considered safe unless decorated with unsafe().

This also recognizes the Django convention of setting
func.alters_data = True.


	Parameters:

	obj (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 



	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]














	
class jinja2.sandbox.ImmutableSandboxedEnvironment([options])

	Works exactly like the regular SandboxedEnvironment but does not
permit modifications on the builtin mutable objects list, set, and
dict by using the modifies_known_mutable() function.


	Parameters:

	
	args (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	kwargs (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
exception jinja2.sandbox.SecurityError(message=None)

	Raised if a template tries to do something insecure if the
sandbox is enabled.


	Parameters:

	message (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 



	Return type:

	None










	
jinja2.sandbox.unsafe(f)

	Marks a function or method as unsafe.


	Parameters:

	f (F) – 



	Return type:

	F










	
jinja2.sandbox.is_internal_attribute(obj, attr)

	Test if the attribute given is an internal python attribute.  For
example this function returns True for the func_code attribute of
python objects.  This is useful if the environment method
is_safe_attribute() is overridden.

>>> from jinja2.sandbox import is_internal_attribute
>>> is_internal_attribute(str, "mro")
True
>>> is_internal_attribute(str, "upper")
False






	Parameters:

	
	obj (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – 






	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]










	
jinja2.sandbox.modifies_known_mutable(obj, attr)

	This function checks if an attribute on a builtin mutable object
(list, dict, set or deque) or the corresponding ABCs would modify it
if called.

>>> modifies_known_mutable({}, "clear")
True
>>> modifies_known_mutable({}, "keys")
False
>>> modifies_known_mutable([], "append")
True
>>> modifies_known_mutable([], "index")
False





If called with an unsupported object, False is returned.

>>> modifies_known_mutable("foo", "upper")
False






	Parameters:

	
	obj (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attr (str [https://docs.python.org/3/library/stdtypes.html#str]) – 






	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]











Operator Intercepting

For performance, Jinja outputs operators directly when compiling. This
means it’s not possible to intercept operator behavior by overriding
SandboxEnvironment.call by default, because
operator special methods are handled by the Python interpreter, and
might not correspond with exactly one method depending on the operator’s
use.

The sandbox can instruct the compiler to output a function to intercept
certain operators instead. Override
SandboxedEnvironment.intercepted_binops and
SandboxedEnvironment.intercepted_unops with the operator symbols
you want to intercept. The compiler will replace the symbols with calls
to SandboxedEnvironment.call_binop() and
SandboxedEnvironment.call_unop() instead. The default
implementation of those methods will use
SandboxedEnvironment.binop_table and
SandboxedEnvironment.unop_table to translate operator symbols
into operator [https://docs.python.org/3/library/operator.html#module-operator] functions.

For example, the power (**) operator can be disabled:

from jinja2.sandbox import SandboxedEnvironment

class MyEnvironment(SandboxedEnvironment):
    intercepted_binops = frozenset(["**"])

    def call_binop(self, context, operator, left, right):
        if operator == "**":
            return self.undefined("The power (**) operator is unavailable.")

        return super().call_binop(self, context, operator, left, right)









            

          

      

      

    

  

    
      
          
            
  
Native Python Types

The default Environment renders templates to strings. With
NativeEnvironment, rendering a template produces a native Python type.
This is useful if you are using Jinja outside the context of creating text
files. For example, your code may have an intermediate step where users may use
templates to define values that will then be passed to a traditional string
environment.


Examples

Adding two values results in an integer, not a string with a number:

>>> env = NativeEnvironment()
>>> t = env.from_string('{{ x + y }}')
>>> result = t.render(x=4, y=2)
>>> print(result)
6
>>> print(type(result))
int





Rendering list syntax produces a list:

>>> t = env.from_string('[{% for item in data %}{{ item + 1 }},{% endfor %}]')
>>> result = t.render(data=range(5))
>>> print(result)
[1, 2, 3, 4, 5]
>>> print(type(result))
list





Rendering something that doesn’t look like a Python literal produces a string:

>>> t = env.from_string('{{ x }} * {{ y }}')
>>> result = t.render(x=4, y=2)
>>> print(result)
4 * 2
>>> print(type(result))
str





Rendering a Python object produces that object as long as it is the only node:

>>> class Foo:
...     def __init__(self, value):
...         self.value = value
...
>>> result = env.from_string('{{ x }}').render(x=Foo(15))
>>> print(type(result).__name__)
Foo
>>> print(result.value)
15







API


	
class jinja2.nativetypes.NativeEnvironment([options])

	An environment that renders templates to native Python types.


	Parameters:

	
	block_start_string (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	block_end_string (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	variable_start_string (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	variable_end_string (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	comment_start_string (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	comment_end_string (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	line_statement_prefix (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 


	line_comment_prefix (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 


	trim_blocks (bool [https://docs.python.org/3/library/functions.html#bool]) – 


	lstrip_blocks (bool [https://docs.python.org/3/library/functions.html#bool]) – 


	newline_sequence (te.Literal['\n', '\r\n', '\r']) – 


	keep_trailing_newline (bool [https://docs.python.org/3/library/functions.html#bool]) – 


	extensions (Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Type [https://docs.python.org/3/library/typing.html#typing.Type][Extension]]]) – 


	optimized (bool [https://docs.python.org/3/library/functions.html#bool]) – 


	undefined (Type [https://docs.python.org/3/library/typing.html#typing.Type][Undefined]) – 


	finalize (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[...], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]) – 


	autoescape (Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]], bool [https://docs.python.org/3/library/functions.html#bool]]]) – 


	loader (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][BaseLoader]) – 


	cache_size (int [https://docs.python.org/3/library/functions.html#int]) – 


	auto_reload (bool [https://docs.python.org/3/library/functions.html#bool]) – 


	bytecode_cache (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][BytecodeCache]) – 


	enable_async (bool [https://docs.python.org/3/library/functions.html#bool]) – 













	
class jinja2.nativetypes.NativeTemplate([options])

	
	Parameters:

	
	source (Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Template]) – 


	block_start_string (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	block_end_string (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	variable_start_string (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	variable_end_string (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	comment_start_string (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	comment_end_string (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	line_statement_prefix (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 


	line_comment_prefix (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 


	trim_blocks (bool [https://docs.python.org/3/library/functions.html#bool]) – 


	lstrip_blocks (bool [https://docs.python.org/3/library/functions.html#bool]) – 


	newline_sequence (te.Literal['\n', '\r\n', '\r']) – 


	keep_trailing_newline (bool [https://docs.python.org/3/library/functions.html#bool]) – 


	extensions (Sequence [https://docs.python.org/3/library/typing.html#typing.Sequence][Union [https://docs.python.org/3/library/typing.html#typing.Union][str [https://docs.python.org/3/library/stdtypes.html#str], Type [https://docs.python.org/3/library/typing.html#typing.Type][Extension]]]) – 


	optimized (bool [https://docs.python.org/3/library/functions.html#bool]) – 


	undefined (Type [https://docs.python.org/3/library/typing.html#typing.Type][Undefined]) – 


	finalize (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[...], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]) – 


	autoescape (Union [https://docs.python.org/3/library/typing.html#typing.Union][bool [https://docs.python.org/3/library/functions.html#bool], Callable [https://docs.python.org/3/library/typing.html#typing.Callable][[Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]], bool [https://docs.python.org/3/library/functions.html#bool]]]) – 


	enable_async (bool [https://docs.python.org/3/library/functions.html#bool]) – 






	Return type:

	Any [https://docs.python.org/3/library/typing.html#typing.Any]






	
render(*args, **kwargs)

	Render the template to produce a native Python type. If the
result is a single node, its value is returned. Otherwise, the
nodes are concatenated as strings. If the result can be parsed
with ast.literal_eval() [https://docs.python.org/3/library/ast.html#ast.literal_eval], the parsed value is returned.
Otherwise, the string is returned.


	Parameters:

	
	args (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	kwargs (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 






	Return type:

	Any [https://docs.python.org/3/library/typing.html#typing.Any]

















            

          

      

      

    

  

    
      
          
            
  
Template Designer Documentation

This document describes the syntax and semantics of the template engine and
will be most useful as reference to those creating Jinja templates.  As the
template engine is very flexible, the configuration from the application can
be slightly different from the code presented here in terms of delimiters and
behavior of undefined values.


Synopsis

A Jinja template is simply a text file. Jinja can generate any text-based
format (HTML, XML, CSV, LaTeX, etc.).  A Jinja template doesn’t need to have a
specific extension: .html, .xml, or any other extension is just fine.

A template contains variables and/or expressions, which get replaced
with values when a template is rendered; and tags, which control the
logic of the template.  The template syntax is heavily inspired by Django and
Python.

Below is a minimal template that illustrates a few basics using the default
Jinja configuration.  We will cover the details later in this document:

<!DOCTYPE html>
<html lang="en">
<head>
    <title>My Webpage</title>
</head>
<body>
    <ul id="navigation">
    {% for item in navigation %}
        <li><a href="{{ item.href }}">{{ item.caption }}</a></li>
    {% endfor %}
    </ul>

    <h1>My Webpage</h1>
    {{ a_variable }}

    {# a comment #}
</body>
</html>





The following example shows the default configuration settings.  An application
developer can change the syntax configuration from {% foo %} to <% foo
%>, or something similar.

There are a few kinds of delimiters. The default Jinja delimiters are
configured as follows:


	{% ... %} for Statements


	{{ ... }} for Expressions to print to the template output


	{# ... #} for Comments not included in the template output




Line Statements and Comments are also possible,
though they don’t have default prefix characters. To use them, set
line_statement_prefix and line_comment_prefix when creating the
Environment.


Template File Extension

As stated above, any file can be loaded as a template, regardless of
file extension. Adding a .jinja extension, like user.html.jinja
may make it easier for some IDEs or editor plugins, but is not required.
Autoescaping, introduced later, can be applied based on file extension,
so you’ll need to take the extra suffix into account in that case.

Another good heuristic for identifying templates is that they are in a
templates folder, regardless of extension. This is a common layout
for projects.




Variables

Template variables are defined by the context dictionary passed to the
template.

You can mess around with the variables in templates provided they are passed in
by the application.  Variables may have attributes or elements on them you can
access too.  What attributes a variable has depends heavily on the application
providing that variable.

You can use a dot (.) to access attributes of a variable in addition
to the standard Python __getitem__ “subscript” syntax ([]).

The following lines do the same thing:

{{ foo.bar }}
{{ foo['bar'] }}





It’s important to know that the outer double-curly braces are not part of the
variable, but the print statement.  If you access variables inside tags don’t
put the braces around them.

If a variable or attribute does not exist, you will get back an undefined
value.  What you can do with that kind of value depends on the application
configuration: the default behavior is to evaluate to an empty string if
printed or iterated over, and to fail for every other operation.


Implementation

For the sake of convenience, foo.bar in Jinja does the following
things on the Python layer:


	check for an attribute called bar on foo
(getattr(foo, 'bar'))


	if there is not, check for an item 'bar' in foo
(foo.__getitem__('bar'))


	if there is not, return an undefined object.




foo['bar'] works mostly the same with a small difference in sequence:


	check for an item 'bar' in foo.
(foo.__getitem__('bar'))


	if there is not, check for an attribute called bar on foo.
(getattr(foo, 'bar'))


	if there is not, return an undefined object.




This is important if an object has an item and attribute with the same
name.  Additionally, the attr() filter only looks up attributes.





Filters

Variables can be modified by filters.  Filters are separated from the
variable by a pipe symbol (|) and may have optional arguments in
parentheses.  Multiple filters can be chained.  The output of one filter is
applied to the next.

For example, {{ name|striptags|title }} will remove all HTML Tags from
variable name and title-case the output (title(striptags(name))).

Filters that accept arguments have parentheses around the arguments, just like
a function call.  For example: {{ listx|join(', ') }} will join a list with
commas (str.join(', ', listx)).

The List of Builtin Filters below describes all the builtin filters.



Tests

Beside filters, there are also so-called “tests” available.  Tests can be used
to test a variable against a common expression.  To test a variable or
expression, you add is plus the name of the test after the variable.  For
example, to find out if a variable is defined, you can do name is defined,
which will then return true or false depending on whether name is defined
in the current template context.

Tests can accept arguments, too.  If the test only takes one argument, you can
leave out the parentheses.  For example, the following two
expressions do the same thing:

{% if loop.index is divisibleby 3 %}
{% if loop.index is divisibleby(3) %}





The List of Builtin Tests below describes all the builtin tests.



Comments

To comment-out part of a line in a template, use the comment syntax which is
by default set to {# ... #}.  This is useful to comment out parts of the
template for debugging or to add information for other template designers or
yourself:

{# note: commented-out template because we no longer use this
    {% for user in users %}
        ...
    {% endfor %}
#}







Whitespace Control

In the default configuration:


	a single trailing newline is stripped if present


	other whitespace (spaces, tabs, newlines etc.) is returned unchanged




If an application configures Jinja to trim_blocks, the first newline after a
template tag is removed automatically (like in PHP). The lstrip_blocks
option can also be set to strip tabs and spaces from the beginning of a
line to the start of a block. (Nothing will be stripped if there are
other characters before the start of the block.)

With both trim_blocks and lstrip_blocks enabled, you can put block tags
on their own lines, and the entire block line will be removed when
rendered, preserving the whitespace of the contents.  For example,
without the trim_blocks and lstrip_blocks options, this template:

<div>
    {% if True %}
        yay
    {% endif %}
</div>





gets rendered with blank lines inside the div:

<div>

        yay

</div>





But with both trim_blocks and lstrip_blocks enabled, the template block
lines are removed and other whitespace is preserved:

<div>
        yay
</div>





You can manually disable the lstrip_blocks behavior by putting a
plus sign (+) at the start of a block:

<div>
        {%+ if something %}yay{% endif %}
</div>





Similarly, you can manually disable the trim_blocks behavior by
putting a plus sign (+) at the end of a block:

<div>
    {% if something +%}
        yay
    {% endif %}
</div>





You can also strip whitespace in templates by hand.  If you add a minus
sign (-) to the start or end of a block (e.g. a For tag), a
comment, or a variable expression, the whitespaces before or after
that block will be removed:

{% for item in seq -%}
    {{ item }}
{%- endfor %}





This will yield all elements without whitespace between them.  If seq was
a list of numbers from 1 to 9, the output would be 123456789.

If Line Statements are enabled, they strip leading whitespace
automatically up to the beginning of the line.

By default, Jinja also removes trailing newlines.  To keep single
trailing newlines, configure Jinja to keep_trailing_newline.


Note

You must not add whitespace between the tag and the minus sign.

valid:

{%- if foo -%}...{% endif %}





invalid:

{% - if foo - %}...{% endif %}









Escaping

It is sometimes desirable – even necessary – to have Jinja ignore parts
it would otherwise handle as variables or blocks.  For example, if, with
the default syntax, you want to use {{ as a raw string in a template and
not start a variable, you have to use a trick.

The easiest way to output a literal variable delimiter ({{) is by using a
variable expression:

{{ '{{' }}





For bigger sections, it makes sense to mark a block raw.  For example, to
include example Jinja syntax in a template, you can use this snippet:

{% raw %}
    <ul>
    {% for item in seq %}
        <li>{{ item }}</li>
    {% endfor %}
    </ul>
{% endraw %}






Note

Minus sign at the end of {% raw -%} tag cleans all the spaces and newlines
preceding the first character of your raw data.





Line Statements

If line statements are enabled by the application, it’s possible to mark a
line as a statement.  For example, if the line statement prefix is configured
to #, the following two examples are equivalent:

<ul>
# for item in seq
    <li>{{ item }}</li>
# endfor
</ul>

<ul>
{% for item in seq %}
    <li>{{ item }}</li>
{% endfor %}
</ul>





The line statement prefix can appear anywhere on the line as long as no text
precedes it.  For better readability, statements that start a block (such as
for, if, elif etc.) may end with a colon:

# for item in seq:
    ...
# endfor






Note

Line statements can span multiple lines if there are open parentheses,
braces or brackets:

<ul>
# for href, caption in [('index.html', 'Index'),
                        ('about.html', 'About')]:
    <li><a href="{{ href }}">{{ caption }}</a></li>
# endfor
</ul>







Since Jinja 2.2, line-based comments are available as well.  For example, if
the line-comment prefix is configured to be ##, everything from ## to
the end of the line is ignored (excluding the newline sign):

# for item in seq:
    <li>{{ item }}</li>     ## this comment is ignored
# endfor







Template Inheritance

The most powerful part of Jinja is template inheritance. Template inheritance
allows you to build a base “skeleton” template that contains all the common
elements of your site and defines blocks that child templates can override.

Sounds complicated but is very basic. It’s easiest to understand it by starting
with an example.


Base Template

This template, which we’ll call base.html, defines a simple HTML skeleton
document that you might use for a simple two-column page. It’s the job of
“child” templates to fill the empty blocks with content:

<!DOCTYPE html>
<html lang="en">
<head>
    {% block head %}
    <link rel="stylesheet" href="style.css" />
    <title>{% block title %}{% endblock %} - My Webpage</title>
    {% endblock %}
</head>
<body>
    <div id="content">{% block content %}{% endblock %}</div>
    <div id="footer">
        {% block footer %}
        &copy; Copyright 2008 by <a href="http://domain.invalid/">you</a>.
        {% endblock %}
    </div>
</body>
</html>





In this example, the {% block %} tags define four blocks that child templates
can fill in. All the block tag does is tell the template engine that a
child template may override those placeholders in the template.

block tags can be inside other blocks such as if, but they will
always be executed regardless of if the if block is actually
rendered.



Child Template

A child template might look like this:

{% extends "base.html" %}
{% block title %}Index{% endblock %}
{% block head %}
    {{ super() }}
    <style type="text/css">
        .important { color: #336699; }
    </style>
{% endblock %}
{% block content %}
    <h1>Index</h1>
    <p class="important">
      Welcome to my awesome homepage.
    </p>
{% endblock %}





The {% extends %} tag is the key here. It tells the template engine that
this template “extends” another template.  When the template system evaluates
this template, it first locates the parent.  The extends tag should be the
first tag in the template.  Everything before it is printed out normally and
may cause confusion.  For details about this behavior and how to take
advantage of it, see Null-Default Fallback. Also a block will always be
filled in regardless of whether the surrounding condition is evaluated to be true
or false.

The filename of the template depends on the template loader.  For example, the
FileSystemLoader allows you to access other templates by giving the
filename.  You can access templates in subdirectories with a slash:

{% extends "layout/default.html" %}





But this behavior can depend on the application embedding Jinja.  Note that
since the child template doesn’t define the footer block, the value from
the parent template is used instead.

You can’t define multiple {% block %} tags with the same name in the
same template.  This limitation exists because a block tag works in “both”
directions.  That is, a block tag doesn’t just provide a placeholder to fill
- it also defines the content that fills the placeholder in the parent.
If there were two similarly-named {% block %} tags in a template,
that template’s parent wouldn’t know which one of the blocks’ content to use.

If you want to print a block multiple times, you can, however, use the special
self variable and call the block with that name:

<title>{% block title %}{% endblock %}</title>
<h1>{{ self.title() }}</h1>
{% block body %}{% endblock %}







Super Blocks

It’s possible to render the contents of the parent block by calling super().
This gives back the results of the parent block:

{% block sidebar %}
    <h3>Table Of Contents</h3>
    ...
    {{ super() }}
{% endblock %}







Nesting extends

In the case of multiple levels of {% extends %},
super references may be chained (as in super.super())
to skip levels in the inheritance tree.

For example:

# parent.tmpl
body: {% block body %}Hi from parent.{% endblock %}

# child.tmpl
{% extends "parent.tmpl" %}
{% block body %}Hi from child. {{ super() }}{% endblock %}

# grandchild1.tmpl
{% extends "child.tmpl" %}
{% block body %}Hi from grandchild1.{% endblock %}

# grandchild2.tmpl
{% extends "child.tmpl" %}
{% block body %}Hi from grandchild2. {{ super.super() }} {% endblock %}





Rendering child.tmpl will give
body: Hi from child. Hi from parent.

Rendering grandchild1.tmpl will give
body: Hi from grandchild1.

Rendering grandchild2.tmpl will give
body: Hi from grandchild2. Hi from parent.



Named Block End-Tags

Jinja allows you to put the name of the block after the end tag for better
readability:

{% block sidebar %}
    {% block inner_sidebar %}
        ...
    {% endblock inner_sidebar %}
{% endblock sidebar %}





However, the name after the endblock word must match the block name.



Block Nesting and Scope

Blocks can be nested for more complex layouts.  However, per default blocks
may not access variables from outer scopes:

{% for item in seq %}
    <li>{% block loop_item %}{{ item }}{% endblock %}</li>
{% endfor %}





This example would output empty <li> items because item is unavailable
inside the block.  The reason for this is that if the block is replaced by
a child template, a variable would appear that was not defined in the block or
passed to the context.

Starting with Jinja 2.2, you can explicitly specify that variables are
available in a block by setting the block to “scoped” by adding the scoped
modifier to a block declaration:

{% for item in seq %}
    <li>{% block loop_item scoped %}{{ item }}{% endblock %}</li>
{% endfor %}





When overriding a block, the scoped modifier does not have to be provided.



Required Blocks

Blocks can be marked as required. They must be overridden at some
point, but not necessarily by the direct child template. Required blocks
may only contain space and comments, and they cannot be rendered
directly.


page.txt

{% block body required %}{% endblock %}








issue.txt

{% extends "page.txt" %}








bug_report.txt

{% extends "issue.txt" %}
{% block body %}Provide steps to demonstrate the bug.{% endblock %}







Rendering page.txt or issue.txt will raise
TemplateRuntimeError because they don’t override the body block.
Rendering bug_report.txt will succeed because it does override the
block.

When combined with scoped, the required modifier must be placed
after the scoped modifier. Here are some valid examples:

{% block body scoped %}{% endblock %}
{% block body required %}{% endblock %}
{% block body scoped required %}{% endblock %}







Template Objects

extends, include, and import can take a template object
instead of the name of a template to load. This could be useful in some
advanced situations, since you can use Python code to load a template
first and pass it in to render.

if debug_mode:
    layout = env.get_template("debug_layout.html")
else:
    layout = env.get_template("layout.html")

user_detail = env.get_template("user/detail.html")
return user_detail.render(layout=layout)





{% extends layout %}





Note how extends is passed the variable with the template object
that was passed to render, instead of a string.




HTML Escaping

When generating HTML from templates, there’s always a risk that a variable will
include characters that affect the resulting HTML. There are two approaches:


	manually escaping each variable; or


	automatically escaping everything by default.




Jinja supports both. What is used depends on the application configuration.
The default configuration is no automatic escaping; for various reasons:


	Escaping everything except for safe values will also mean that Jinja is
escaping variables known to not include HTML (e.g. numbers, booleans)
which can be a huge performance hit.


	The information about the safety of a variable is very fragile.  It could
happen that by coercing safe and unsafe values, the return value is
double-escaped HTML.





Working with Manual Escaping

If manual escaping is enabled, it’s your responsibility to escape
variables if needed.  What to escape?  If you have a variable that may
include any of the following chars (>, <, &, or ") you
SHOULD escape it unless the variable contains well-formed and trusted
HTML.  Escaping works by piping the variable through the |e filter:

{{ user.username|e }}







Working with Automatic Escaping

When automatic escaping is enabled, everything is escaped by default except
for values explicitly marked as safe.  Variables and expressions
can be marked as safe either in:


	The context dictionary by the application with
markupsafe.Markup


	The template, with the |safe filter.




If a string that you marked safe is passed through other Python code
that doesn’t understand that mark, it may get lost. Be aware of when
your data is marked safe and how it is processed before arriving at the
template.

If a value has been escaped but is not marked safe, auto-escaping will
still take place and result in double-escaped characters. If you know
you have data that is already safe but not marked, be sure to wrap it in
Markup or use the |safe filter.

Jinja functions (macros, super, self.BLOCKNAME) always return template
data that is marked as safe.

String literals in templates with automatic escaping are considered
unsafe because native Python strings are not safe.




List of Control Structures

A control structure refers to all those things that control the flow of a
program - conditionals (i.e. if/elif/else), for-loops, as well as things like
macros and blocks.  With the default syntax, control structures appear inside
{% ... %} blocks.


For

Loop over each item in a sequence.  For example, to display a list of users
provided in a variable called users:

<h1>Members</h1>
<ul>
{% for user in users %}
  <li>{{ user.username|e }}</li>
{% endfor %}
</ul>





As variables in templates retain their object properties, it is possible to
iterate over containers like dict:

<dl>
{% for key, value in my_dict.items() %}
    <dt>{{ key|e }}</dt>
    <dd>{{ value|e }}</dd>
{% endfor %}
</dl>





Python dicts may not be in the order you want to display them in. If
order matters, use the |dictsort filter.

<dl>
{% for key, value in my_dict | dictsort %}
    <dt>{{ key|e }}</dt>
    <dd>{{ value|e }}</dd>
{% endfor %}
</dl>





Inside of a for-loop block, you can access some special variables:



	Variable

	Description





	loop.index

	The current iteration of the loop. (1 indexed)



	loop.index0

	The current iteration of the loop. (0 indexed)



	loop.revindex

	The number of iterations from the end of the loop
(1 indexed)



	loop.revindex0

	The number of iterations from the end of the loop
(0 indexed)



	loop.first

	True if first iteration.



	loop.last

	True if last iteration.



	loop.length

	The number of items in the sequence.



	loop.cycle

	A helper function to cycle between a list of
sequences.  See the explanation below.



	loop.depth

	Indicates how deep in a recursive loop
the rendering currently is.  Starts at level 1



	loop.depth0

	Indicates how deep in a recursive loop
the rendering currently is.  Starts at level 0



	loop.previtem

	The item from the previous iteration of the loop.
Undefined during the first iteration.



	loop.nextitem

	The item from the following iteration of the loop.
Undefined during the last iteration.



	loop.changed(*val)

	True if previously called with a different value
(or not called at all).






Within a for-loop, it’s possible to cycle among a list of strings/variables
each time through the loop by using the special loop.cycle helper:

{% for row in rows %}
    <li class="{{ loop.cycle('odd', 'even') }}">{{ row }}</li>
{% endfor %}





Since Jinja 2.1, an extra cycle helper exists that allows loop-unbound
cycling.  For more information, have a look at the List of Global Functions.

Unlike in Python, it’s not possible to break or continue in a loop.  You
can, however, filter the sequence during iteration, which allows you to skip
items.  The following example skips all the users which are hidden:

{% for user in users if not user.hidden %}
    <li>{{ user.username|e }}</li>
{% endfor %}





The advantage is that the special loop variable will count correctly; thus
not counting the users not iterated over.

If no iteration took place because the sequence was empty or the filtering
removed all the items from the sequence, you can render a default block
by using else:

<ul>
{% for user in users %}
    <li>{{ user.username|e }}</li>
{% else %}
    <li><em>no users found</em></li>
{% endfor %}
</ul>





Note that, in Python, else blocks are executed whenever the corresponding
loop did not break.  Since Jinja loops cannot break anyway,
a slightly different behavior of the else keyword was chosen.

It is also possible to use loops recursively.  This is useful if you are
dealing with recursive data such as sitemaps or RDFa.
To use loops recursively, you basically have to add the recursive modifier
to the loop definition and call the loop variable with the new iterable
where you want to recurse.

The following example implements a sitemap with recursive loops:

<ul class="sitemap">
{%- for item in sitemap recursive %}
    <li><a href="{{ item.href|e }}">{{ item.title }}</a>
    {%- if item.children -%}
        <ul class="submenu">{{ loop(item.children) }}</ul>
    {%- endif %}</li>
{%- endfor %}
</ul>





The loop variable always refers to the closest (innermost) loop. If we
have more than one level of loops, we can rebind the variable loop by
writing {% set outer_loop = loop %} after the loop that we want to
use recursively. Then, we can call it using {{ outer_loop(…) }}

Please note that assignments in loops will be cleared at the end of the
iteration and cannot outlive the loop scope.  Older versions of Jinja had
a bug where in some circumstances it appeared that assignments would work.
This is not supported.  See Assignments for more information about
how to deal with this.

If all you want to do is check whether some value has changed since the
last iteration or will change in the next iteration, you can use previtem
and nextitem:

{% for value in values %}
    {% if loop.previtem is defined and value > loop.previtem %}
        The value just increased!
    {% endif %}
    {{ value }}
    {% if loop.nextitem is defined and loop.nextitem > value %}
        The value will increase even more!
    {% endif %}
{% endfor %}





If you only care whether the value changed at all, using changed is even
easier:

{% for entry in entries %}
    {% if loop.changed(entry.category) %}
        <h2>{{ entry.category }}</h2>
    {% endif %}
    <p>{{ entry.message }}</p>
{% endfor %}







If

The if statement in Jinja is comparable with the Python if statement.
In the simplest form, you can use it to test if a variable is defined, not
empty and not false:

{% if users %}
<ul>
{% for user in users %}
    <li>{{ user.username|e }}</li>
{% endfor %}
</ul>
{% endif %}





For multiple branches, elif and else can be used like in Python.  You can
use more complex Expressions there, too:

{% if kenny.sick %}
    Kenny is sick.
{% elif kenny.dead %}
    You killed Kenny!  You bastard!!!
{% else %}
    Kenny looks okay --- so far
{% endif %}





If can also be used as an inline expression and for
loop filtering.



Macros

Macros are comparable with functions in regular programming languages.  They
are useful to put often used idioms into reusable functions to not repeat
yourself (“DRY”).

Here’s a small example of a macro that renders a form element:

{% macro input(name, value='', type='text', size=20) -%}
    <input type="{{ type }}" name="{{ name }}" value="{{
        value|e }}" size="{{ size }}">
{%- endmacro %}





The macro can then be called like a function in the namespace:

<p>{{ input('username') }}</p>
<p>{{ input('password', type='password') }}</p>





If the macro was defined in a different template, you have to
import it first.

Inside macros, you have access to three special variables:


	varargs
	If more positional arguments are passed to the macro than accepted by the
macro, they end up in the special varargs variable as a list of values.



	kwargs
	Like varargs but for keyword arguments.  All unconsumed keyword
arguments are stored in this special variable.



	caller
	If the macro was called from a call tag, the caller is stored
in this variable as a callable macro.





Macros also expose some of their internal details.  The following attributes
are available on a macro object:


	name
	The name of the macro.  {{ input.name }} will print input.



	arguments
	A tuple of the names of arguments the macro accepts.



	catch_kwargs
	This is true if the macro accepts extra keyword arguments (i.e.: accesses
the special kwargs variable).



	catch_varargs
	This is true if the macro accepts extra positional arguments (i.e.:
accesses the special varargs variable).



	caller
	This is true if the macro accesses the special caller variable and may
be called from a call tag.





If a macro name starts with an underscore, it’s not exported and can’t
be imported.

Due to how scopes work in Jinja, a macro in a child template does not
override a macro in a parent template. The following will output
“LAYOUT”, not “CHILD”.


layout.txt

{% macro foo() %}LAYOUT{% endmacro %}
{% block body %}{% endblock %}








child.txt

{% extends 'layout.txt' %}
{% macro foo() %}CHILD{% endmacro %}
{% block body %}{{ foo() }}{% endblock %}









Call

In some cases it can be useful to pass a macro to another macro.  For this
purpose, you can use the special call block.  The following example shows
a macro that takes advantage of the call functionality and how it can be
used:

{% macro render_dialog(title, class='dialog') -%}
    <div class="{{ class }}">
        <h2>{{ title }}</h2>
        <div class="contents">
            {{ caller() }}
        </div>
    </div>
{%- endmacro %}

{% call render_dialog('Hello World') %}
    This is a simple dialog rendered by using a macro and
    a call block.
{% endcall %}





It’s also possible to pass arguments back to the call block.  This makes it
useful as a replacement for loops.  Generally speaking, a call block works
exactly like a macro without a name.

Here’s an example of how a call block can be used with arguments:

{% macro dump_users(users) -%}
    <ul>
    {%- for user in users %}
        <li><p>{{ user.username|e }}</p>{{ caller(user) }}</li>
    {%- endfor %}
    </ul>
{%- endmacro %}

{% call(user) dump_users(list_of_user) %}
    <dl>
        <dt>Realname</dt>
        <dd>{{ user.realname|e }}</dd>
        <dt>Description</dt>
        <dd>{{ user.description }}</dd>
    </dl>
{% endcall %}







Filters

Filter sections allow you to apply regular Jinja filters on a block of
template data.  Just wrap the code in the special filter section:

{% filter upper %}
    This text becomes uppercase
{% endfilter %}







Assignments

Inside code blocks, you can also assign values to variables.  Assignments at
top level (outside of blocks, macros or loops) are exported from the template
like top level macros and can be imported by other templates.

Assignments use the set tag and can have multiple targets:

{% set navigation = [('index.html', 'Index'), ('about.html', 'About')] %}
{% set key, value = call_something() %}






Scoping Behavior

Please keep in mind that it is not possible to set variables inside a
block and have them show up outside of it.  This also applies to
loops.  The only exception to that rule are if statements which do not
introduce a scope.  As a result the following template is not going
to do what you might expect:

{% set iterated = false %}
{% for item in seq %}
    {{ item }}
    {% set iterated = true %}
{% endfor %}
{% if not iterated %} did not iterate {% endif %}





It is not possible with Jinja syntax to do this.  Instead use
alternative constructs like the loop else block or the special loop
variable:

{% for item in seq %}
    {{ item }}
{% else %}
    did not iterate
{% endfor %}





As of version 2.10 more complex use cases can be handled using namespace
objects which allow propagating of changes across scopes:

{% set ns = namespace(found=false) %}
{% for item in items %}
    {% if item.check_something() %}
        {% set ns.found = true %}
    {% endif %}
    * {{ item.title }}
{% endfor %}
Found item having something: {{ ns.found }}





Note that the obj.attr notation in the set tag is only allowed for
namespace objects; attempting to assign an attribute on any other object
will raise an exception.


Changelog
New in version 2.10: Added support for namespace objects







Block Assignments


Changelog
New in version 2.8.



Starting with Jinja 2.8, it’s possible to also use block assignments to
capture the contents of a block into a variable name.  This can be useful
in some situations as an alternative for macros.  In that case, instead of
using an equals sign and a value, you just write the variable name and then
everything until {% endset %} is captured.

Example:

{% set navigation %}
    <li><a href="/">Index</a>
    <li><a href="/downloads">Downloads</a>
{% endset %}





The navigation variable then contains the navigation HTML source.


Changelog
Changed in version 2.10.



Starting with Jinja 2.10, the block assignment supports filters.

Example:

{% set reply | wordwrap %}
    You wrote:
    {{ message }}
{% endset %}







Extends

The extends tag can be used to extend one template from another.  You can
have multiple extends tags in a file, but only one of them may be executed at
a time.

See the section about Template Inheritance above.



Blocks

Blocks are used for inheritance and act as both placeholders and replacements
at the same time.  They are documented in detail in the
Template Inheritance section.



Include

The include tag renders another template and outputs the result into
the current template.

{% include 'header.html' %}
Body goes here.
{% include 'footer.html' %}





The included template has access to context of the current template by
default. Use without context to use a separate context instead.
with context is also valid, but is the default behavior. See
Import Context Behavior.

The included template can extend another template and override
blocks in that template. However, the current template cannot override
any blocks that the included template outputs.

Use ignore missing to ignore the statement if the template does not
exist. It must be placed before a context visibility statement.

{% include "sidebar.html" without context %}
{% include "sidebar.html" ignore missing %}
{% include "sidebar.html" ignore missing with context %}
{% include "sidebar.html" ignore missing without context %}





If a list of templates is given, each will be tried in order until one
is not missing. This can be used with ignore missing to ignore if
none of the templates exist.

{% include ['page_detailed.html', 'page.html'] %}
{% include ['special_sidebar.html', 'sidebar.html'] ignore missing %}





A variable, with either a template name or template object, can also be
passed to the statment.



Import

Jinja supports putting often used code into macros.  These macros can go into
different templates and get imported from there.  This works similarly to the
import statements in Python.  It’s important to know that imports are cached
and imported templates don’t have access to the current template variables,
just the globals by default.  For more details about context behavior of
imports and includes, see Import Context Behavior.

There are two ways to import templates.  You can import a complete template
into a variable or request specific macros / exported variables from it.

Imagine we have a helper module that renders forms (called forms.html):

{% macro input(name, value='', type='text') -%}
    <input type="{{ type }}" value="{{ value|e }}" name="{{ name }}">
{%- endmacro %}

{%- macro textarea(name, value='', rows=10, cols=40) -%}
    <textarea name="{{ name }}" rows="{{ rows }}" cols="{{ cols
        }}">{{ value|e }}</textarea>
{%- endmacro %}





The easiest and most flexible way to access a template’s variables
and macros is to import the whole template module into a variable.
That way, you can access the attributes:

{% import 'forms.html' as forms %}
<dl>
    <dt>Username</dt>
    <dd>{{ forms.input('username') }}</dd>
    <dt>Password</dt>
    <dd>{{ forms.input('password', type='password') }}</dd>
</dl>
<p>{{ forms.textarea('comment') }}</p>





Alternatively, you can import specific names from a template into the current
namespace:

{% from 'forms.html' import input as input_field, textarea %}
<dl>
    <dt>Username</dt>
    <dd>{{ input_field('username') }}</dd>
    <dt>Password</dt>
    <dd>{{ input_field('password', type='password') }}</dd>
</dl>
<p>{{ textarea('comment') }}</p>





Macros and variables starting with one or more underscores are private and
cannot be imported.


Changelog
Changed in version 2.4: If a template object was passed to the template context, you can
import from that object.






Import Context Behavior

By default, included templates are passed the current context and imported
templates are not.  The reason for this is that imports, unlike includes,
are cached; as imports are often used just as a module that holds macros.

This behavior can be changed explicitly: by adding with context
or without context to the import/include directive, the current context
can be passed to the template and caching is disabled automatically.

Here are two examples:

{% from 'forms.html' import input with context %}
{% include 'header.html' without context %}






Note

In Jinja 2.0, the context that was passed to the included template
did not include variables defined in the template.  As a matter of
fact, this did not work:

{% for box in boxes %}
    {% include "render_box.html" %}
{% endfor %}





The included template render_box.html is not able to access
box in Jinja 2.0. As of Jinja 2.1, render_box.html is able
to do so.





Expressions

Jinja allows basic expressions everywhere.  These work very similarly to
regular Python; even if you’re not working with Python
you should feel comfortable with it.


Literals

The simplest form of expressions are literals.  Literals are representations
for Python objects such as strings and numbers.  The following literals exist:


	"Hello World"
	Everything between two double or single quotes is a string.  They are
useful whenever you need a string in the template (e.g. as
arguments to function calls and filters, or just to extend or include a
template).



	42 / 123_456
	Integers are whole numbers without a decimal part. The ‘_’ character
can be used to separate groups for legibility.



	42.23 / 42.1e2 / 123_456.789
	Floating point numbers can be written using a ‘.’ as a decimal mark.
They can also be written in scientific notation with an upper or
lower case ‘e’ to indicate the exponent part. The ‘_’ character can
be used to separate groups for legibility, but cannot be used in the
exponent part.



	['list', 'of', 'objects']
	Everything between two brackets is a list.  Lists are useful for storing
sequential data to be iterated over.  For example, you can easily
create a list of links using lists and tuples for (and with) a for loop:

<ul>
{% for href, caption in [('index.html', 'Index'), ('about.html', 'About'),
                         ('downloads.html', 'Downloads')] %}
    <li><a href="{{ href }}">{{ caption }}</a></li>
{% endfor %}
</ul>







	('tuple', 'of', 'values')
	Tuples are like lists that cannot be modified (“immutable”).  If a tuple
only has one item, it must be followed by a comma (('1-tuple',)).
Tuples are usually used to represent items of two or more elements.
See the list example above for more details.



	{'dict': 'of', 'key': 'and', 'value': 'pairs'}
	A dict in Python is a structure that combines keys and values.  Keys must
be unique and always have exactly one value.  Dicts are rarely used in
templates; they are useful in some rare cases such as the xmlattr()
filter.



	true / false
	true is always true and false is always false.






Note

The special constants true, false, and none are indeed lowercase.
Because that caused confusion in the past, (True used to expand
to an undefined variable that was considered false),
all three can now also be written in title case
(True, False, and None).
However, for consistency, (all Jinja identifiers are lowercase)
you should use the lowercase versions.





Math

Jinja allows you to calculate with values.  This is rarely useful in templates
but exists for completeness’ sake.  The following operators are supported:


	+
	Adds two objects together. Usually the objects are numbers, but if both are
strings or lists, you can concatenate them this way.  This, however, is not
the preferred way to concatenate strings!  For string concatenation, have
a look-see at the ~ operator.  {{ 1 + 1 }} is 2.



	-
	Subtract the second number from the first one.  {{ 3 - 2 }} is 1.



	/
	Divide two numbers.  The return value will be a floating point number.
{{ 1 / 2 }} is {{ 0.5 }}.



	//
	Divide two numbers and return the truncated integer result.
{{ 20 // 7 }} is 2.



	%
	Calculate the remainder of an integer division.  {{ 11 % 7 }} is 4.



	*
	Multiply the left operand with the right one.  {{ 2 * 2 }} would
return 4.  This can also be used to repeat a string multiple times.
{{ '=' * 80 }} would print a bar of 80 equal signs.



	**
	Raise the left operand to the power of the right operand.
{{ 2**3 }} would return 8.

Unlike Python, chained pow is evaluated left to right.
{{ 3**3**3 }} is evaluated as (3**3)**3 in Jinja, but would
be evaluated as 3**(3**3) in Python. Use parentheses in Jinja
to be explicit about what order you want. It is usually preferable
to do extended math in Python and pass the results to render
rather than doing it in the template.

This behavior may be changed in the future to match Python, if it’s
possible to introduce an upgrade path.







Comparisons


	==
	Compares two objects for equality.



	!=
	Compares two objects for inequality.



	>
	true if the left hand side is greater than the right hand side.



	>=
	true if the left hand side is greater or equal to the right hand side.



	<
	true if the left hand side is lower than the right hand side.



	<=
	true if the left hand side is lower or equal to the right hand side.







Logic

For if statements, for filtering, and if expressions, it can be useful to
combine multiple expressions:


	and
	Return true if the left and the right operand are true.



	or
	Return true if the left or the right operand are true.



	not
	negate a statement (see below).



	(expr)
	Parentheses group an expression.






Note

The is and in operators support negation using an infix notation,
too: foo is not bar and foo not in bar instead of not foo is bar
and not foo in bar.  All other expressions require a prefix notation:
not (foo and bar).





Other Operators

The following operators are very useful but don’t fit into any of the other
two categories:


	in
	Perform a sequence / mapping containment test.  Returns true if the left
operand is contained in the right.  {{ 1 in [1, 2, 3] }} would, for
example, return true.



	is
	Performs a test.



	| (pipe, vertical bar)
	Applies a filter.



	~ (tilde)
	Converts all operands into strings and concatenates them.

{{ "Hello " ~ name ~ "!" }} would return (assuming name is set
to 'John') Hello John!.



	()
	Call a callable: {{ post.render() }}.  Inside of the parentheses you
can use positional arguments and keyword arguments like in Python:

{{ post.render(user, full=true) }}.



	. / []
	Get an attribute of an object.  (See Variables)







If Expression

It is also possible to use inline if expressions.  These are useful in some
situations.  For example, you can use this to extend from one template if a
variable is defined, otherwise from the default layout template:

{% extends layout_template if layout_template is defined else 'default.html' %}





The general syntax is <do something> if <something is true> else <do
something else>.

The else part is optional.  If not provided, the else block implicitly
evaluates into an Undefined object (regardless of what undefined
in the environment is set to):

{{ "[{}]".format(page.title) if page.title }}







Python Methods

You can also use any of the methods defined on a variable’s type.
The value returned from the method invocation is used as the value of the expression.
Here is an example that uses methods defined on strings (where page.title is a string):

{{ page.title.capitalize() }}





This works for methods on user-defined types. For example, if variable
f of type Foo has a method bar defined on it, you can do the
following:

{{ f.bar(value) }}





Operator methods also work as expected. For example, % implements
printf-style for strings:

{{ "Hello, %s!" % name }}





Although you should prefer the .format method for that case (which
is a bit contrived in the context of rendering a template):

{{ "Hello, {}!".format(name) }}








List of Builtin Filters



	abs()

	forceescape()

	map()

	select()

	unique()



	attr()

	format()

	max()

	selectattr()

	upper()



	batch()

	groupby()

	min()

	slice()

	urlencode()



	capitalize()

	indent()

	pprint()

	sort()

	urlize()



	center()

	int()

	random()

	string()

	wordcount()



	default()

	items()

	reject()

	striptags()

	wordwrap()



	dictsort()

	join()

	rejectattr()

	sum()

	xmlattr()



	escape()

	last()

	replace()

	title()

	


	filesizeformat()

	length()

	reverse()

	tojson()

	


	first()

	list()

	round()

	trim()

	


	float()

	lower()

	safe()

	truncate()

	






	
jinja-filters.abs(x, /)

	Return the absolute value of the argument.






	
jinja-filters.attr(obj: Any, name: str [https://docs.python.org/3/library/stdtypes.html#str]) → Union[jinja2.runtime.Undefined, Any]

	Get an attribute of an object.  foo|attr("bar") works like
foo.bar just that always an attribute is returned and items are not
looked up.

See Notes on subscriptions for more details.






	
jinja-filters.batch(value: 't.Iterable[V]', linecount: int [https://docs.python.org/3/library/functions.html#int], fill_with: 't.Optional[V]' = None) → 't.Iterator[t.List[V]]'

	A filter that batches items. It works pretty much like slice
just the other way round. It returns a list of lists with the
given number of items. If you provide a second parameter this
is used to fill up missing items. See this example:

<table>
{%- for row in items|batch(3, '&nbsp;') %}
  <tr>
  {%- for column in row %}
    <td>{{ column }}</td>
  {%- endfor %}
  </tr>
{%- endfor %}
</table>










	
jinja-filters.capitalize(s: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Capitalize a value. The first character will be uppercase, all others
lowercase.






	
jinja-filters.center(value: str [https://docs.python.org/3/library/stdtypes.html#str], width: int [https://docs.python.org/3/library/functions.html#int] = 80) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Centers the value in a field of a given width.






	
jinja-filters.default(value: V, default_value: V = '', boolean: bool [https://docs.python.org/3/library/functions.html#bool] = False) → V

	If the value is undefined it will return the passed default value,
otherwise the value of the variable:

{{ my_variable|default('my_variable is not defined') }}





This will output the value of my_variable if the variable was
defined, otherwise 'my_variable is not defined'. If you want
to use default with variables that evaluate to false you have to
set the second parameter to true:

{{ ''|default('the string was empty', true) }}






Changelog
Changed in version 2.11: It’s now possible to configure the Environment with
ChainableUndefined to make the default filter work
on nested elements and attributes that may contain undefined values
in the chain without getting an UndefinedError.




	Aliases:

	d










	
jinja-filters.dictsort(value: Mapping[K, V], case_sensitive: bool [https://docs.python.org/3/library/functions.html#bool] = False, by: 'te.Literal["key", "value"]' = 'key', reverse: bool [https://docs.python.org/3/library/functions.html#bool] = False) → List[Tuple[K, V]]

	Sort a dict and yield (key, value) pairs. Python dicts may not
be in the order you want to display them in, so sort them first.

{% for key, value in mydict|dictsort %}
    sort the dict by key, case insensitive

{% for key, value in mydict|dictsort(reverse=true) %}
    sort the dict by key, case insensitive, reverse order

{% for key, value in mydict|dictsort(true) %}
    sort the dict by key, case sensitive

{% for key, value in mydict|dictsort(false, 'value') %}
    sort the dict by value, case insensitive










	
jinja-filters.escape(value)

	Replace the characters &, <, >, ', and " in the string with HTML-safe sequences. Use this if you need to display text that might contain such characters in HTML.

If the object has an __html__ method, it is called and the return value is assumed to already be safe for HTML.


	Parameters:

	s – An object to be converted to a string and escaped.



	Returns:

	A Markup string with the escaped text.



	Aliases:

	e










	
jinja-filters.filesizeformat(value: Union[str [https://docs.python.org/3/library/stdtypes.html#str], float [https://docs.python.org/3/library/functions.html#float], int [https://docs.python.org/3/library/functions.html#int]], binary: bool [https://docs.python.org/3/library/functions.html#bool] = False) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Format the value like a ‘human-readable’ file size (i.e. 13 kB,
4.1 MB, 102 Bytes, etc).  Per default decimal prefixes are used (Mega,
Giga, etc.), if the second parameter is set to True the binary
prefixes are used (Mebi, Gibi).






	
jinja-filters.first(seq: 't.Iterable[V]') → 't.Union[V, Undefined]'

	Return the first item of a sequence.






	
jinja-filters.float(value: Any, default: float [https://docs.python.org/3/library/functions.html#float] = 0.0) → float [https://docs.python.org/3/library/functions.html#float]

	Convert the value into a floating point number. If the
conversion doesn’t work it will return 0.0. You can
override this default using the first parameter.






	
jinja-filters.forceescape(value: 't.Union[str, HasHTML]') → markupsafe.Markup

	Enforce HTML escaping.  This will probably double escape variables.






	
jinja-filters.format(value: str [https://docs.python.org/3/library/stdtypes.html#str], *args: Any, **kwargs: Any) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Apply the given values to a printf-style [https://docs.python.org/library/stdtypes.html#printf-style-string-formatting] format string, like
string % values.

{{ "%s, %s!"|format(greeting, name) }}
Hello, World!





In most cases it should be more convenient and efficient to use the
% operator or str.format() [https://docs.python.org/3/library/stdtypes.html#str.format].

{{ "%s, %s!" % (greeting, name) }}
{{ "{}, {}!".format(greeting, name) }}










	
jinja-filters.groupby(value: 't.Iterable[V]', attribute: Union[str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int]], default: Optional[Any] = None, case_sensitive: bool [https://docs.python.org/3/library/functions.html#bool] = False) → 't.List[_GroupTuple]'

	Group a sequence of objects by an attribute using Python’s
itertools.groupby() [https://docs.python.org/3/library/itertools.html#itertools.groupby]. The attribute can use dot notation for
nested access, like "address.city". Unlike Python’s groupby,
the values are sorted first so only one group is returned for each
unique value.

For example, a list of User objects with a city attribute
can be rendered in groups. In this example, grouper refers to
the city value of the group.

<ul>{% for city, items in users|groupby("city") %}
  <li>{{ city }}
    <ul>{% for user in items %}
      <li>{{ user.name }}
    {% endfor %}</ul>
  </li>
{% endfor %}</ul>





groupby yields namedtuples of (grouper, list), which
can be used instead of the tuple unpacking above. grouper is the
value of the attribute, and list is the items with that value.

<ul>{% for group in users|groupby("city") %}
  <li>{{ group.grouper }}: {{ group.list|join(", ") }}
{% endfor %}</ul>





You can specify a default value to use if an object in the list
does not have the given attribute.

<ul>{% for city, items in users|groupby("city", default="NY") %}
  <li>{{ city }}: {{ items|map(attribute="name")|join(", ") }}</li>
{% endfor %}</ul>





Like the sort() filter, sorting and grouping is
case-insensitive by default. The key for each group will have
the case of the first item in that group of values. For example, if
a list of users has cities ["CA", "NY", "ca"], the “CA” group
will have two values. This can be disabled by passing
case_sensitive=True.


Changelog
Changed in version 3.1: Added the case_sensitive parameter. Sorting and grouping is
case-insensitive by default, matching other filters that do
comparisons.




Changed in version 3.0: Added the default parameter.




Changed in version 2.6: The attribute supports dot notation for nested access.








	
jinja-filters.indent(s: str [https://docs.python.org/3/library/stdtypes.html#str], width: Union[int [https://docs.python.org/3/library/functions.html#int], str [https://docs.python.org/3/library/stdtypes.html#str]] = 4, first: bool [https://docs.python.org/3/library/functions.html#bool] = False, blank: bool [https://docs.python.org/3/library/functions.html#bool] = False) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Return a copy of the string with each line indented by 4 spaces. The
first line and blank lines are not indented by default.


	Parameters:

	
	width – Number of spaces, or a string, to indent by.


	first – Don’t skip indenting the first line.


	blank – Don’t skip indenting empty lines.









Changelog
Changed in version 3.0: width can be a string.




Changed in version 2.10: Blank lines are not indented by default.

Rename the indentfirst argument to first.








	
jinja-filters.int(value: Any, default: int [https://docs.python.org/3/library/functions.html#int] = 0, base: int [https://docs.python.org/3/library/functions.html#int] = 10) → int [https://docs.python.org/3/library/functions.html#int]

	Convert the value into an integer. If the
conversion doesn’t work it will return 0. You can
override this default using the first parameter. You
can also override the default base (10) in the second
parameter, which handles input with prefixes such as
0b, 0o and 0x for bases 2, 8 and 16 respectively.
The base is ignored for decimal numbers and non-string values.






	
jinja-filters.items(value: Union[Mapping[K, V], jinja2.runtime.Undefined]) → Iterator[Tuple[K, V]]

	Return an iterator over the (key, value) items of a mapping.

x|items is the same as x.items(), except if x is
undefined an empty iterator is returned.

This filter is useful if you expect the template to be rendered with
an implementation of Jinja in another programming language that does
not have a .items() method on its mapping type.

<dl>
{% for key, value in my_dict|items %}
    <dt>{{ key }}
    <dd>{{ value }}
{% endfor %}
</dl>






Changelog
New in version 3.1.








	
jinja-filters.join(value: Iterable, d: str [https://docs.python.org/3/library/stdtypes.html#str] = '', attribute: Union[str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int], NoneType] = None) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Return a string which is the concatenation of the strings in the
sequence. The separator between elements is an empty string per
default, you can define it with the optional parameter:

{{ [1, 2, 3]|join('|') }}
    -> 1|2|3

{{ [1, 2, 3]|join }}
    -> 123





It is also possible to join certain attributes of an object:

{{ users|join(', ', attribute='username') }}






Changelog
New in version 2.6: The attribute parameter was added.








	
jinja-filters.last(seq: 't.Reversible[V]') → 't.Union[V, Undefined]'

	Return the last item of a sequence.

Note: Does not work with generators. You may want to explicitly
convert it to a list:

{{ data | selectattr('name', '==', 'Jinja') | list | last }}










	
jinja-filters.length(obj, /)

	Return the number of items in a container.


	Aliases:

	count










	
jinja-filters.list(value: 't.Iterable[V]') → 't.List[V]'

	Convert the value into a list.  If it was a string the returned list
will be a list of characters.






	
jinja-filters.lower(s: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Convert a value to lowercase.






	
jinja-filters.map(value: Iterable, *args: Any, **kwargs: Any) → Iterable

	Applies a filter on a sequence of objects or looks up an attribute.
This is useful when dealing with lists of objects but you are really
only interested in a certain value of it.

The basic usage is mapping on an attribute.  Imagine you have a list
of users but you are only interested in a list of usernames:

Users on this page: {{ users|map(attribute='username')|join(', ') }}





You can specify a default value to use if an object in the list
does not have the given attribute.

{{ users|map(attribute="username", default="Anonymous")|join(", ") }}





Alternatively you can let it invoke a filter by passing the name of the
filter and the arguments afterwards.  A good example would be applying a
text conversion filter on a sequence:

Users on this page: {{ titles|map('lower')|join(', ') }}





Similar to a generator comprehension such as:

(u.username for u in users)
(getattr(u, "username", "Anonymous") for u in users)
(do_lower(x) for x in titles)






Changelog
Changed in version 2.11.0: Added the default parameter.




New in version 2.7.








	
jinja-filters.max(value: 't.Iterable[V]', case_sensitive: bool [https://docs.python.org/3/library/functions.html#bool] = False, attribute: Union[str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int], NoneType] = None) → 't.Union[V, Undefined]'

	Return the largest item from the sequence.

{{ [1, 2, 3]|max }}
    -> 3






	Parameters:

	
	case_sensitive – Treat upper and lower case strings as distinct.


	attribute – Get the object with the max value of this attribute.













	
jinja-filters.min(value: 't.Iterable[V]', case_sensitive: bool [https://docs.python.org/3/library/functions.html#bool] = False, attribute: Union[str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int], NoneType] = None) → 't.Union[V, Undefined]'

	Return the smallest item from the sequence.

{{ [1, 2, 3]|min }}
    -> 1






	Parameters:

	
	case_sensitive – Treat upper and lower case strings as distinct.


	attribute – Get the object with the min value of this attribute.













	
jinja-filters.pprint(value: Any) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Pretty print a variable. Useful for debugging.






	
jinja-filters.random(seq: 't.Sequence[V]') → 't.Union[V, Undefined]'

	Return a random item from the sequence.






	
jinja-filters.reject(value: 't.Iterable[V]', *args: Any, **kwargs: Any) → 't.Iterator[V]'

	Filters a sequence of objects by applying a test to each object,
and rejecting the objects with the test succeeding.

If no test is specified, each object will be evaluated as a boolean.

Example usage:

{{ numbers|reject("odd") }}





Similar to a generator comprehension such as:

(n for n in numbers if not test_odd(n))






Changelog
New in version 2.7.








	
jinja-filters.rejectattr(value: 't.Iterable[V]', *args: Any, **kwargs: Any) → 't.Iterator[V]'

	Filters a sequence of objects by applying a test to the specified
attribute of each object, and rejecting the objects with the test
succeeding.

If no test is specified, the attribute’s value will be evaluated as
a boolean.

{{ users|rejectattr("is_active") }}
{{ users|rejectattr("email", "none") }}





Similar to a generator comprehension such as:

(u for user in users if not user.is_active)
(u for user in users if not test_none(user.email))






Changelog
New in version 2.7.








	
jinja-filters.replace(s: str [https://docs.python.org/3/library/stdtypes.html#str], old: str [https://docs.python.org/3/library/stdtypes.html#str], new: str [https://docs.python.org/3/library/stdtypes.html#str], count: Optional[int [https://docs.python.org/3/library/functions.html#int]] = None) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Return a copy of the value with all occurrences of a substring
replaced with a new one. The first argument is the substring
that should be replaced, the second is the replacement string.
If the optional third argument count is given, only the first
count occurrences are replaced:

{{ "Hello World"|replace("Hello", "Goodbye") }}
    -> Goodbye World

{{ "aaaaargh"|replace("a", "d'oh, ", 2) }}
    -> d'oh, d'oh, aaargh










	
jinja-filters.reverse(value: Union[str [https://docs.python.org/3/library/stdtypes.html#str], Iterable[V]]) → Union[str [https://docs.python.org/3/library/stdtypes.html#str], Iterable[V]]

	Reverse the object or return an iterator that iterates over it the other
way round.






	
jinja-filters.round(value: float [https://docs.python.org/3/library/functions.html#float], precision: int [https://docs.python.org/3/library/functions.html#int] = 0, method: 'te.Literal["common", "ceil", "floor"]' = 'common') → float [https://docs.python.org/3/library/functions.html#float]

	Round the number to a given precision. The first
parameter specifies the precision (default is 0), the
second the rounding method:


	'common' rounds either up or down


	'ceil' always rounds up


	'floor' always rounds down




If you don’t specify a method 'common' is used.

{{ 42.55|round }}
    -> 43.0
{{ 42.55|round(1, 'floor') }}
    -> 42.5





Note that even if rounded to 0 precision, a float is returned.  If
you need a real integer, pipe it through int:

{{ 42.55|round|int }}
    -> 43










	
jinja-filters.safe(value: str [https://docs.python.org/3/library/stdtypes.html#str]) → markupsafe.Markup

	Mark the value as safe which means that in an environment with automatic
escaping enabled this variable will not be escaped.






	
jinja-filters.select(value: 't.Iterable[V]', *args: Any, **kwargs: Any) → 't.Iterator[V]'

	Filters a sequence of objects by applying a test to each object,
and only selecting the objects with the test succeeding.

If no test is specified, each object will be evaluated as a boolean.

Example usage:

{{ numbers|select("odd") }}
{{ numbers|select("odd") }}
{{ numbers|select("divisibleby", 3) }}
{{ numbers|select("lessthan", 42) }}
{{ strings|select("equalto", "mystring") }}





Similar to a generator comprehension such as:

(n for n in numbers if test_odd(n))
(n for n in numbers if test_divisibleby(n, 3))






Changelog
New in version 2.7.








	
jinja-filters.selectattr(value: 't.Iterable[V]', *args: Any, **kwargs: Any) → 't.Iterator[V]'

	Filters a sequence of objects by applying a test to the specified
attribute of each object, and only selecting the objects with the
test succeeding.

If no test is specified, the attribute’s value will be evaluated as
a boolean.

Example usage:

{{ users|selectattr("is_active") }}
{{ users|selectattr("email", "none") }}





Similar to a generator comprehension such as:

(u for user in users if user.is_active)
(u for user in users if test_none(user.email))






Changelog
New in version 2.7.








	
jinja-filters.slice(value: 't.Collection[V]', slices: int [https://docs.python.org/3/library/functions.html#int], fill_with: 't.Optional[V]' = None) → 't.Iterator[t.List[V]]'

	Slice an iterator and return a list of lists containing
those items. Useful if you want to create a div containing
three ul tags that represent columns:

<div class="columnwrapper">
  {%- for column in items|slice(3) %}
    <ul class="column-{{ loop.index }}">
    {%- for item in column %}
      <li>{{ item }}</li>
    {%- endfor %}
    </ul>
  {%- endfor %}
</div>





If you pass it a second argument it’s used to fill missing
values on the last iteration.






	
jinja-filters.sort(value: 't.Iterable[V]', reverse: bool [https://docs.python.org/3/library/functions.html#bool] = False, case_sensitive: bool [https://docs.python.org/3/library/functions.html#bool] = False, attribute: Union[str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int], NoneType] = None) → 't.List[V]'

	Sort an iterable using Python’s sorted() [https://docs.python.org/3/library/functions.html#sorted].

{% for city in cities|sort %}
    ...
{% endfor %}






	Parameters:

	
	reverse – Sort descending instead of ascending.


	case_sensitive – When sorting strings, sort upper and lower
case separately.


	attribute – When sorting objects or dicts, an attribute or
key to sort by. Can use dot notation like "address.city".
Can be a list of attributes like "age,name".








The sort is stable, it does not change the relative order of
elements that compare equal. This makes it is possible to chain
sorts on different attributes and ordering.

{% for user in users|sort(attribute="name")
    |sort(reverse=true, attribute="age") %}
    ...
{% endfor %}





As a shortcut to chaining when the direction is the same for all
attributes, pass a comma separate list of attributes.

{% for user in users|sort(attribute="age,name") %}
    ...
{% endfor %}






Changelog
Changed in version 2.11.0: The attribute parameter can be a comma separated list of
attributes, e.g. "age,name".




Changed in version 2.6: The attribute parameter was added.








	
jinja-filters.string(value)

	Convert an object to a string if it isn’t already. This preserves a Markup string rather than converting it back to a basic string, so it will still be marked as safe and won’t be escaped again.

>>> value = escape("<User 1>")
>>> value
Markup('&lt;User 1&gt;')
>>> escape(str(value))
Markup('&amp;lt;User 1&amp;gt;')
>>> escape(soft_str(value))
Markup('&lt;User 1&gt;')










	
jinja-filters.striptags(value: 't.Union[str, HasHTML]') → str [https://docs.python.org/3/library/stdtypes.html#str]

	Strip SGML/XML tags and replace adjacent whitespace by one space.






	
jinja-filters.sum(iterable: 't.Iterable[V]', attribute: Union[str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int], NoneType] = None, start: V = 0) → V

	Returns the sum of a sequence of numbers plus the value of parameter
‘start’ (which defaults to 0).  When the sequence is empty it returns
start.

It is also possible to sum up only certain attributes:

Total: {{ items|sum(attribute='price') }}






Changelog
Changed in version 2.6: The attribute parameter was added to allow summing up over
attributes.  Also the start parameter was moved on to the right.








	
jinja-filters.title(s: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Return a titlecased version of the value. I.e. words will start with
uppercase letters, all remaining characters are lowercase.






	
jinja-filters.tojson(value: Any, indent: Optional[int [https://docs.python.org/3/library/functions.html#int]] = None) → markupsafe.Markup

	Serialize an object to a string of JSON, and mark it safe to
render in HTML. This filter is only for use in HTML documents.

The returned string is safe to render in HTML documents and
<script> tags. The exception is in HTML attributes that are
double quoted; either use single quotes or the |forceescape
filter.


	Parameters:

	
	value – The object to serialize to JSON.


	indent – The indent parameter passed to dumps, for
pretty-printing the value.









Changelog
New in version 2.9.








	
jinja-filters.trim(value: str [https://docs.python.org/3/library/stdtypes.html#str], chars: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Strip leading and trailing characters, by default whitespace.






	
jinja-filters.truncate(s: str [https://docs.python.org/3/library/stdtypes.html#str], length: int [https://docs.python.org/3/library/functions.html#int] = 255, killwords: bool [https://docs.python.org/3/library/functions.html#bool] = False, end: str [https://docs.python.org/3/library/stdtypes.html#str] = '...', leeway: Optional[int [https://docs.python.org/3/library/functions.html#int]] = None) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Return a truncated copy of the string. The length is specified
with the first parameter which defaults to 255. If the second
parameter is true the filter will cut the text at length. Otherwise
it will discard the last word. If the text was in fact
truncated it will append an ellipsis sign ("..."). If you want a
different ellipsis sign than "..." you can specify it using the
third parameter. Strings that only exceed the length by the tolerance
margin given in the fourth parameter will not be truncated.

{{ "foo bar baz qux"|truncate(9) }}
    -> "foo..."
{{ "foo bar baz qux"|truncate(9, True) }}
    -> "foo ba..."
{{ "foo bar baz qux"|truncate(11) }}
    -> "foo bar baz qux"
{{ "foo bar baz qux"|truncate(11, False, '...', 0) }}
    -> "foo bar..."





The default leeway on newer Jinja versions is 5 and was 0 before but
can be reconfigured globally.






	
jinja-filters.unique(value: 't.Iterable[V]', case_sensitive: bool [https://docs.python.org/3/library/functions.html#bool] = False, attribute: Union[str [https://docs.python.org/3/library/stdtypes.html#str], int [https://docs.python.org/3/library/functions.html#int], NoneType] = None) → 't.Iterator[V]'

	Returns a list of unique items from the given iterable.

{{ ['foo', 'bar', 'foobar', 'FooBar']|unique|list }}
    -> ['foo', 'bar', 'foobar']





The unique items are yielded in the same order as their first occurrence in
the iterable passed to the filter.


	Parameters:

	
	case_sensitive – Treat upper and lower case strings as distinct.


	attribute – Filter objects with unique values for this attribute.













	
jinja-filters.upper(s: str [https://docs.python.org/3/library/stdtypes.html#str]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Convert a value to uppercase.






	
jinja-filters.urlencode(value: Union[str [https://docs.python.org/3/library/stdtypes.html#str], Mapping[str [https://docs.python.org/3/library/stdtypes.html#str], Any], Iterable[Tuple[str [https://docs.python.org/3/library/stdtypes.html#str], Any]]]) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Quote data for use in a URL path or query using UTF-8.

Basic wrapper around urllib.parse.quote() [https://docs.python.org/3/library/urllib.parse.html#urllib.parse.quote] when given a
string, or urllib.parse.urlencode() [https://docs.python.org/3/library/urllib.parse.html#urllib.parse.urlencode] for a dict or iterable.


	Parameters:

	value – Data to quote. A string will be quoted directly. A
dict or iterable of (key, value) pairs will be joined as a
query string.





When given a string, “/” is not quoted. HTTP servers treat “/” and
“%2F” equivalently in paths. If you need quoted slashes, use the
|replace("/", "%2F") filter.


Changelog
New in version 2.7.








	
jinja-filters.urlize(value: str [https://docs.python.org/3/library/stdtypes.html#str], trim_url_limit: Optional[int [https://docs.python.org/3/library/functions.html#int]] = None, nofollow: bool [https://docs.python.org/3/library/functions.html#bool] = False, target: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None, rel: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None, extra_schemes: Optional[Iterable[str [https://docs.python.org/3/library/stdtypes.html#str]]] = None) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Convert URLs in text into clickable links.

This may not recognize links in some situations. Usually, a more
comprehensive formatter, such as a Markdown library, is a better
choice.

Works on http://, https://, www., mailto:, and email
addresses. Links with trailing punctuation (periods, commas, closing
parentheses) and leading punctuation (opening parentheses) are
recognized excluding the punctuation. Email addresses that include
header fields are not recognized (for example,
mailto:address@example.com?cc=copy@example.com).


	Parameters:

	
	value – Original text containing URLs to link.


	trim_url_limit – Shorten displayed URL values to this length.


	nofollow – Add the rel=nofollow attribute to links.


	target – Add the target attribute to links.


	rel – Add the rel attribute to links.


	extra_schemes – Recognize URLs that start with these schemes
in addition to the default behavior. Defaults to
env.policies["urlize.extra_schemes"], which defaults to no
extra schemes.









Changelog
Changed in version 3.0: The extra_schemes parameter was added.




Changed in version 3.0: Generate https:// links for URLs without a scheme.




Changed in version 3.0: The parsing rules were updated. Recognize email addresses with
or without the mailto: scheme. Validate IP addresses. Ignore
parentheses and brackets in more cases.




Changed in version 2.8: The target parameter was added.








	
jinja-filters.wordcount(s: str [https://docs.python.org/3/library/stdtypes.html#str]) → int [https://docs.python.org/3/library/functions.html#int]

	Count the words in that string.






	
jinja-filters.wordwrap(s: str [https://docs.python.org/3/library/stdtypes.html#str], width: int [https://docs.python.org/3/library/functions.html#int] = 79, break_long_words: bool [https://docs.python.org/3/library/functions.html#bool] = True, wrapstring: Optional[str [https://docs.python.org/3/library/stdtypes.html#str]] = None, break_on_hyphens: bool [https://docs.python.org/3/library/functions.html#bool] = True) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Wrap a string to the given width. Existing newlines are treated
as paragraphs to be wrapped separately.


	Parameters:

	
	s – Original text to wrap.


	width – Maximum length of wrapped lines.


	break_long_words – If a word is longer than width, break
it across lines.


	break_on_hyphens – If a word contains hyphens, it may be split
across lines.


	wrapstring – String to join each wrapped line. Defaults to
Environment.newline_sequence.









Changelog
Changed in version 2.11: Existing newlines are treated as paragraphs wrapped separately.




Changed in version 2.11: Added the break_on_hyphens parameter.




Changed in version 2.7: Added the wrapstring parameter.








	
jinja-filters.xmlattr(d: Mapping[str [https://docs.python.org/3/library/stdtypes.html#str], Any], autospace: bool [https://docs.python.org/3/library/functions.html#bool] = True) → str [https://docs.python.org/3/library/stdtypes.html#str]

	Create an SGML/XML attribute string based on the items in a dict.
All values that are neither none nor undefined are automatically
escaped:

<ul{{ {'class': 'my_list', 'missing': none,
        'id': 'list-%d'|format(variable)}|xmlattr }}>
...
</ul>





Results in something like this:

<ul class="my_list" id="list-42">
...
</ul>





As you can see it automatically prepends a space in front of the item
if the filter returned something unless the second parameter is false.







List of Builtin Tests



	boolean()

	even()

	in()

	mapping()

	sequence()



	callable()

	false()

	integer()

	ne()

	string()



	defined()

	filter()

	iterable()

	none()

	test()



	divisibleby()

	float()

	le()

	number()

	true()



	eq()

	ge()

	lower()

	odd()

	undefined()



	escaped()

	gt()

	lt()

	sameas()

	upper()







	
jinja-tests.boolean(value: Any) → bool [https://docs.python.org/3/library/functions.html#bool]

	Return true if the object is a boolean value.


Changelog
New in version 2.11.








	
jinja-tests.callable(obj, /)

	Return whether the object is callable (i.e., some kind of function).

Note that classes are callable, as are instances of classes with a
__call__() method.






	
jinja-tests.defined(value: Any) → bool [https://docs.python.org/3/library/functions.html#bool]

	Return true if the variable is defined:

{% if variable is defined %}
    value of variable: {{ variable }}
{% else %}
    variable is not defined
{% endif %}





See the default() filter for a simple way to set undefined
variables.






	
jinja-tests.divisibleby(value: int [https://docs.python.org/3/library/functions.html#int], num: int [https://docs.python.org/3/library/functions.html#int]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Check if a variable is divisible by a number.






	
jinja-tests.eq(a, b, /)

	Same as a == b.


	Aliases:

	==, equalto










	
jinja-tests.escaped(value: Any) → bool [https://docs.python.org/3/library/functions.html#bool]

	Check if the value is escaped.






	
jinja-tests.even(value: int [https://docs.python.org/3/library/functions.html#int]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Return true if the variable is even.






	
jinja-tests.false(value: Any) → bool [https://docs.python.org/3/library/functions.html#bool]

	Return true if the object is False.


Changelog
New in version 2.11.








	
jinja-tests.filter(value: str [https://docs.python.org/3/library/stdtypes.html#str]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Check if a filter exists by name. Useful if a filter may be
optionally available.

{% if 'markdown' is filter %}
    {{ value | markdown }}
{% else %}
    {{ value }}
{% endif %}






Changelog
New in version 3.0.








	
jinja-tests.float(value: Any) → bool [https://docs.python.org/3/library/functions.html#bool]

	Return true if the object is a float.


Changelog
New in version 2.11.








	
jinja-tests.ge(a, b, /)

	Same as a >= b.


	Aliases:

	>=










	
jinja-tests.gt(a, b, /)

	Same as a > b.


	Aliases:

	>, greaterthan










	
jinja-tests.in(value: Any, seq: Container) → bool [https://docs.python.org/3/library/functions.html#bool]

	Check if value is in seq.


Changelog
New in version 2.10.








	
jinja-tests.integer(value: Any) → bool [https://docs.python.org/3/library/functions.html#bool]

	Return true if the object is an integer.


Changelog
New in version 2.11.








	
jinja-tests.iterable(value: Any) → bool [https://docs.python.org/3/library/functions.html#bool]

	Check if it’s possible to iterate over an object.






	
jinja-tests.le(a, b, /)

	Same as a <= b.


	Aliases:

	<=










	
jinja-tests.lower(value: str [https://docs.python.org/3/library/stdtypes.html#str]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Return true if the variable is lowercased.






	
jinja-tests.lt(a, b, /)

	Same as a < b.


	Aliases:

	<, lessthan










	
jinja-tests.mapping(value: Any) → bool [https://docs.python.org/3/library/functions.html#bool]

	Return true if the object is a mapping (dict etc.).


Changelog
New in version 2.6.








	
jinja-tests.ne(a, b, /)

	Same as a != b.


	Aliases:

	!=










	
jinja-tests.none(value: Any) → bool [https://docs.python.org/3/library/functions.html#bool]

	Return true if the variable is none.






	
jinja-tests.number(value: Any) → bool [https://docs.python.org/3/library/functions.html#bool]

	Return true if the variable is a number.






	
jinja-tests.odd(value: int [https://docs.python.org/3/library/functions.html#int]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Return true if the variable is odd.






	
jinja-tests.sameas(value: Any, other: Any) → bool [https://docs.python.org/3/library/functions.html#bool]

	Check if an object points to the same memory address than another
object:

{% if foo.attribute is sameas false %}
    the foo attribute really is the `False` singleton
{% endif %}










	
jinja-tests.sequence(value: Any) → bool [https://docs.python.org/3/library/functions.html#bool]

	Return true if the variable is a sequence. Sequences are variables
that are iterable.






	
jinja-tests.string(value: Any) → bool [https://docs.python.org/3/library/functions.html#bool]

	Return true if the object is a string.






	
jinja-tests.test(value: str [https://docs.python.org/3/library/stdtypes.html#str]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Check if a test exists by name. Useful if a test may be
optionally available.

{% if 'loud' is test %}
    {% if value is loud %}
        {{ value|upper }}
    {% else %}
        {{ value|lower }}
    {% endif %}
{% else %}
    {{ value }}
{% endif %}






Changelog
New in version 3.0.








	
jinja-tests.true(value: Any) → bool [https://docs.python.org/3/library/functions.html#bool]

	Return true if the object is True.


Changelog
New in version 2.11.








	
jinja-tests.undefined(value: Any) → bool [https://docs.python.org/3/library/functions.html#bool]

	Like defined() but the other way round.






	
jinja-tests.upper(value: str [https://docs.python.org/3/library/stdtypes.html#str]) → bool [https://docs.python.org/3/library/functions.html#bool]

	Return true if the variable is uppercased.







List of Global Functions

The following functions are available in the global scope by default:


	
jinja-globals.range([start, ]stop[, step])

	Return a list containing an arithmetic progression of integers.
range(i, j) returns [i, i+1, i+2, ..., j-1];
start (!) defaults to 0.
When step is given, it specifies the increment (or decrement).
For example, range(4) and range(0, 4, 1) return [0, 1, 2, 3].
The end point is omitted!
These are exactly the valid indices for a list of 4 elements.

This is useful to repeat a template block multiple times, e.g.
to fill a list.  Imagine you have 7 users in the list but you want to
render three empty items to enforce a height with CSS:

<ul>
{% for user in users %}
    <li>{{ user.username }}</li>
{% endfor %}
{% for number in range(10 - users|count) %}
    <li class="empty"><span>...</span></li>
{% endfor %}
</ul>










	
jinja-globals.lipsum(n=5, html=True, min=20, max=100)

	Generates some lorem ipsum for the template.  By default, five paragraphs
of HTML are generated with each paragraph between 20 and 100 words.
If html is False, regular text is returned.  This is useful to generate simple
contents for layout testing.






	
jinja-globals.dict(\**items)

	A convenient alternative to dict literals.  {'foo': 'bar'} is the same
as dict(foo='bar').






	
class jinja-globals.cycler(\*items)

	Cycle through values by yielding them one at a time, then restarting
once the end is reached.

Similar to loop.cycle, but can be used outside loops or across
multiple loops. For example, render a list of folders and files in a
list, alternating giving them “odd” and “even” classes.

{% set row_class = cycler("odd", "even") %}
<ul class="browser">
{% for folder in folders %}
  <li class="folder {{ row_class.next() }}">{{ folder }}
{% endfor %}
{% for file in files %}
  <li class="file {{ row_class.next() }}">{{ file }}
{% endfor %}
</ul>






	Parameters:

	items – Each positional argument will be yielded in the order
given for each cycle.






Changelog
New in version 2.1.




	
property current

	Return the current item. Equivalent to the item that will be
returned next time next() is called.






	
next()

	Return the current item, then advance current to the
next item.






	
reset()

	Resets the current item to the first item.










	
class jinja-globals.joiner(sep=', ')

	A tiny helper that can be used to “join” multiple sections.  A joiner is
passed a string and will return that string every time it’s called, except
the first time (in which case it returns an empty string).  You can
use this to join things:

{% set pipe = joiner("|") %}
{% if categories %} {{ pipe() }}
    Categories: {{ categories|join(", ") }}
{% endif %}
{% if author %} {{ pipe() }}
    Author: {{ author() }}
{% endif %}
{% if can_edit %} {{ pipe() }}
    <a href="?action=edit">Edit</a>
{% endif %}






Changelog
New in version 2.1.








	
class jinja-globals.namespace(...)

	Creates a new container that allows attribute assignment using the
{% set %} tag:

{% set ns = namespace() %}
{% set ns.foo = 'bar' %}





The main purpose of this is to allow carrying a value from within a loop
body to an outer scope.  Initial values can be provided as a dict, as
keyword arguments, or both (same behavior as Python’s dict constructor):

{% set ns = namespace(found=false) %}
{% for item in items %}
    {% if item.check_something() %}
        {% set ns.found = true %}
    {% endif %}
    * {{ item.title }}
{% endfor %}
Found item having something: {{ ns.found }}






Changelog
New in version 2.10.









Extensions

The following sections cover the built-in Jinja extensions that may be
enabled by an application.  An application could also provide further
extensions not covered by this documentation; in which case there should
be a separate document explaining said extensions.


i18n

If the i18n Extension is enabled, it’s possible to mark text in
the template as translatable. To mark a section as translatable, use a
trans block:

{% trans %}Hello, {{ user }}!{% endtrans %}





Inside the block, no statements are allowed, only text and simple
variable tags.

Variable tags can only be a name, not attribute access, filters, or
other expressions. To use an expression, bind it to a name in the
trans tag for use in the block.

{% trans user=user.username %}Hello, {{ user }}!{% endtrans %}





To bind more than one expression, separate each with a comma (,).

{% trans book_title=book.title, author=author.name %}
This is {{ book_title }} by {{ author }}
{% endtrans %}





To pluralize, specify both the singular and plural forms separated by
the pluralize tag.

{% trans count=list|length %}
There is {{ count }} {{ name }} object.
{% pluralize %}
There are {{ count }} {{ name }} objects.
{% endtrans %}





By default, the first variable in a block is used to determine whether
to use singular or plural form. If that isn’t correct, specify the
variable used for pluralizing as a parameter to pluralize.

{% trans ..., user_count=users|length %}...
{% pluralize user_count %}...{% endtrans %}





When translating blocks of text, whitespace and linebreaks result in
hard to read and error-prone translation strings. To avoid this, a trans
block can be marked as trimmed, which will replace all linebreaks and
the whitespace surrounding them with a single space and remove leading
and trailing whitespace.

{% trans trimmed book_title=book.title %}
    This is {{ book_title }}.
    You should read it!
{% endtrans %}





This results in This is %(book_title)s. You should read it! in the
translation file.

If trimming is enabled globally, the notrimmed modifier can be used
to disable it for a block.


Changelog
New in version 2.10: The trimmed and notrimmed modifiers have been added.



If the translation depends on the context that the message appears in,
the pgettext and npgettext functions take a context string
as the first argument, which is used to select the appropriate
translation. To specify a context with the {% trans %} tag, provide
a string as the first token after trans.

{% trans "fruit" %}apple{% endtrans %}
{% trans "fruit" trimmed count -%}
    1 apple
{%- pluralize -%}
    {{ count }} apples
{%- endtrans %}






Changelog
New in version 3.1: A context can be passed to the trans tag to use pgettext and
npgettext.



It’s possible to translate strings in expressions with these functions:


	_(message): Alias for gettext.


	gettext(message): Translate a message.


	ngettext(singluar, plural, n): Translate a singular or plural
message based on a count variable.


	pgettext(context, message): Like gettext(), but picks the
translation based on the context string.


	npgettext(context, singular, plural, n): Like npgettext(),
but picks the translation based on the context string.




You can print a translated string like this:

{{ _("Hello, World!") }}





To use placeholders, use the format filter.

{{ _("Hello, %(user)s!")|format(user=user.username) }}





Always use keyword arguments to format, as other languages may not
use the words in the same order.

If New Style Gettext calls are activated, using placeholders is
easier. Formatting is part of the gettext call instead of using the
format filter.

{{ gettext('Hello World!') }}
{{ gettext('Hello %(name)s!', name='World') }}
{{ ngettext('%(num)d apple', '%(num)d apples', apples|count) }}





The ngettext function’s format string automatically receives the
count as a num parameter in addition to the given parameters.



Expression Statement

If the expression-statement extension is loaded, a tag called do is available
that works exactly like the regular variable expression ({{ ... }}); except
it doesn’t print anything.  This can be used to modify lists:

{% do navigation.append('a string') %}







Loop Controls

If the application enables the Loop Controls, it’s possible to
use break and continue in loops.  When break is reached, the loop is
terminated;  if continue is reached, the processing is stopped and continues
with the next iteration.

Here’s a loop that skips every second item:

{% for user in users %}
    {%- if loop.index is even %}{% continue %}{% endif %}
    ...
{% endfor %}





Likewise, a loop that stops processing after the 10th iteration:

{% for user in users %}
    {%- if loop.index >= 10 %}{% break %}{% endif %}
{%- endfor %}





Note that loop.index starts with 1, and loop.index0 starts with 0
(See: For).



Debug Statement

If the Debug Extension is enabled, a {% debug %} tag will be
available to dump the current context as well as the available filters
and tests. This is useful to see what’s available to use in the template
without setting up a debugger.

<pre>{% debug %}</pre>





{'context': {'cycler': <class 'jinja2.utils.Cycler'>,
             ...,
             'namespace': <class 'jinja2.utils.Namespace'>},
 'filters': ['abs', 'attr', 'batch', 'capitalize', 'center', 'count', 'd',
             ..., 'urlencode', 'urlize', 'wordcount', 'wordwrap', 'xmlattr'],
 'tests': ['!=', '<', '<=', '==', '>', '>=', 'callable', 'defined',
           ..., 'odd', 'sameas', 'sequence', 'string', 'undefined', 'upper']}







With Statement


Changelog
New in version 2.3.



The with statement makes it possible to create a new inner scope.
Variables set within this scope are not visible outside of the scope.

With in a nutshell:

{% with %}
    {% set foo = 42 %}
    {{ foo }}           foo is 42 here
{% endwith %}
foo is not visible here any longer





Because it is common to set variables at the beginning of the scope,
you can do that within the with statement.  The following two examples
are equivalent:

{% with foo = 42 %}
    {{ foo }}
{% endwith %}

{% with %}
    {% set foo = 42 %}
    {{ foo }}
{% endwith %}





An important note on scoping here.  In Jinja versions before 2.9 the
behavior of referencing one variable to another had some unintended
consequences.  In particular one variable could refer to another defined
in the same with block’s opening statement.  This caused issues with the
cleaned up scoping behavior and has since been improved.  In particular
in newer Jinja versions the following code always refers to the variable
a from outside the with block:

{% with a={}, b=a.attribute %}...{% endwith %}





In earlier Jinja versions the b attribute would refer to the results of
the first attribute.  If you depend on this behavior you can rewrite it to
use the set tag:

{% with a={} %}
    {% set b = a.attribute %}
{% endwith %}






Extension

In older versions of Jinja (before 2.9) it was required to enable this
feature with an extension.  It’s now enabled by default.






Autoescape Overrides


Changelog
New in version 2.4.



If you want you can activate and deactivate the autoescaping from within
the templates.

Example:

{% autoescape true %}
    Autoescaping is active within this block
{% endautoescape %}

{% autoescape false %}
    Autoescaping is inactive within this block
{% endautoescape %}





After an endautoescape the behavior is reverted to what it was before.


Extension

In older versions of Jinja (before 2.9) it was required to enable this
feature with an extension.  It’s now enabled by default.







            

          

      

      

    

  

    
      
          
            
  
Extensions

Jinja supports extensions that can add extra filters, tests, globals or even
extend the parser.  The main motivation of extensions is to move often used
code into a reusable class like adding support for internationalization.


Adding Extensions

Extensions are added to the Jinja environment at creation time.  To add an
extension pass a list of extension classes or import paths to the
extensions parameter of the Environment constructor.  The following
example creates a Jinja environment with the i18n extension loaded:

jinja_env = Environment(extensions=['jinja2.ext.i18n'])





To add extensions after creation time, use the add_extension() method:

jinja_env.add_extension('jinja2.ext.debug')







i18n Extension

Import name: jinja2.ext.i18n

The i18n extension can be used in combination with gettext [https://docs.python.org/3/library/gettext.html] or
Babel [https://babel.pocoo.org/].  When it’s enabled, Jinja provides a trans statement that
marks a block as translatable and calls gettext.

After enabling, an application has to provide functions for gettext,
ngettext, and optionally pgettext and npgettext, either
globally or when rendering. A _() function is added as an alias to
the gettext function.


Environment Methods

After enabling the extension, the environment provides the following
additional methods:


	
jinja2.Environment.install_gettext_translations(translations, newstyle=False)

	Installs a translation globally for the environment. The
translations object must implement gettext, ngettext,
and optionally pgettext and npgettext.
gettext.NullTranslations [https://docs.python.org/3/library/gettext.html#gettext.NullTranslations], gettext.GNUTranslations [https://docs.python.org/3/library/gettext.html#gettext.GNUTranslations],
and Babel [https://babel.pocoo.org/]s Translations are supported.


Changelog
Changed in version 3.0: Added pgettext and npgettext.




Changed in version 2.5: Added new-style gettext support.








	
jinja2.Environment.install_null_translations(newstyle=False)

	Install no-op gettext functions. This is useful if you want to
prepare the application for internationalization but don’t want to
implement the full system yet.


Changelog
Changed in version 2.5: Added new-style gettext support.








	
jinja2.Environment.install_gettext_callables(gettext, ngettext, newstyle=False, pgettext=None, npgettext=None)

	Install the given gettext, ngettext, pgettext, and
npgettext callables into the environment. They should behave
exactly like gettext.gettext() [https://docs.python.org/3/library/gettext.html#gettext.gettext], gettext.ngettext() [https://docs.python.org/3/library/gettext.html#gettext.ngettext],
gettext.pgettext() [https://docs.python.org/3/library/gettext.html#gettext.pgettext] and gettext.npgettext() [https://docs.python.org/3/library/gettext.html#gettext.npgettext].

If newstyle is activated, the callables are wrapped to work like
newstyle callables.  See New Style Gettext for more information.


Changelog
Changed in version 3.0: Added pgettext and npgettext.




New in version 2.5: Added new-style gettext support.








	
jinja2.Environment.uninstall_gettext_translations()

	Uninstall the environment’s globally installed translation.






	
jinja2.Environment.extract_translations(source)

	Extract localizable strings from the given template node or source.

For every string found this function yields a (lineno, function,
message) tuple, where:


	lineno is the number of the line on which the string was
found.


	function is the name of the gettext function used (if
the string was extracted from embedded Python code).


	message is the string itself, or a tuple of strings for
functions with multiple arguments.




If Babel [https://babel.pocoo.org/] is installed, see Babel to extract
the strings.





For a web application that is available in multiple languages but gives
all the users the same language (for example, multilingual forum
software installed for a French community), the translation may be
installed when the environment is created.

translations = get_gettext_translations()
env = Environment(extensions=["jinja2.ext.i18n"])
env.install_gettext_translations(translations)





The get_gettext_translations function would return the translator
for the current configuration, for example by using gettext.find.

The usage of the i18n extension for template designers is covered in
the template documentation.



Whitespace Trimming


Changelog
New in version 2.10.



Within {% trans %} blocks, it can be useful to trim line breaks and
whitespace so that the block of text looks like a simple string with
single spaces in the translation file.

Linebreaks and surrounding whitespace can be automatically trimmed by
enabling the ext.i18n.trimmed policy.



New Style Gettext


Changelog
New in version 2.5.



New style gettext calls are less to type, less error prone, and support
autoescaping better.

You can use “new style” gettext calls by setting
env.newstyle_gettext = True or passing newstyle=True to
env.install_translations. They are fully supported by the Babel
extraction tool, but might not work as expected with other extraction
tools.

With standard gettext calls, string formatting is a separate step
done with the |format filter. This requires duplicating work for
ngettext calls.

{{ gettext("Hello, World!") }}
{{ gettext("Hello, %(name)s!")|format(name=name) }}
{{ ngettext(
       "%(num)d apple", "%(num)d apples", apples|count
   )|format(num=apples|count) }}
{{ pgettext("greeting", "Hello, World!") }}
{{ npgettext(
       "fruit", "%(num)d apple", "%(num)d apples", apples|count
   )|format(num=apples|count) }}





New style gettext make formatting part of the call, and behind the
scenes enforce more consistency.

{{ gettext("Hello, World!") }}
{{ gettext("Hello, %(name)s!", name=name) }}
{{ ngettext("%(num)d apple", "%(num)d apples", apples|count) }}
{{ pgettext("greeting", "Hello, World!") }}
{{ npgettext("fruit", "%(num)d apple", "%(num)d apples", apples|count) }}





The advantages of newstyle gettext are:


	There’s no separate formatting step, you don’t have to remember to
use the |format filter.


	Only named placeholders are allowed. This solves a common problem
translators face because positional placeholders can’t switch
positions meaningfully. Named placeholders always carry semantic
information about what value goes where.


	String formatting is used even if no placeholders are used, which
makes all strings use a consistent format. Remember to escape any
raw percent signs as %%, such as 100%%.


	The translated string is marked safe, formatting performs escaping
as needed. Mark a parameter as |safe if it has already been
escaped.







Expression Statement

Import name: jinja2.ext.do

The “do” aka expression-statement extension adds a simple do tag to the
template engine that works like a variable expression but ignores the
return value.



Loop Controls

Import name: jinja2.ext.loopcontrols

This extension adds support for break and continue in loops.  After
enabling, Jinja provides those two keywords which work exactly like in
Python.



With Statement

Import name: jinja2.ext.with_


Changelog
Changed in version 2.9: This extension is now built-in and no longer does anything.





Autoescape Extension

Import name: jinja2.ext.autoescape


Changelog
Changed in version 2.9: This extension was removed and is now built-in. Enabling the
extension no longer does anything.





Debug Extension

Import name: jinja2.ext.debug

Adds a {% debug %} tag to dump the current context as well as the
available filters and tests. This is useful to see what’s available to
use in the template without setting up a debugger.



Writing Extensions

By writing extensions you can add custom tags to Jinja.  This is a non-trivial
task and usually not needed as the default tags and expressions cover all
common use cases.  The i18n extension is a good example of why extensions are
useful. Another one would be fragment caching.

When writing extensions you have to keep in mind that you are working with the
Jinja template compiler which does not validate the node tree you are passing
to it.  If the AST is malformed you will get all kinds of compiler or runtime
errors that are horrible to debug.  Always make sure you are using the nodes
you create correctly.  The API documentation below shows which nodes exist and
how to use them.



Example Extensions


Cache

The following example implements a cache tag for Jinja by using the
cachelib [https://github.com/pallets/cachelib] library:

from jinja2 import nodes
from jinja2.ext import Extension


class FragmentCacheExtension(Extension):
    # a set of names that trigger the extension.
    tags = {"cache"}

    def __init__(self, environment):
        super().__init__(environment)

        # add the defaults to the environment
        environment.extend(fragment_cache_prefix="", fragment_cache=None)

    def parse(self, parser):
        # the first token is the token that started the tag.  In our case
        # we only listen to ``'cache'`` so this will be a name token with
        # `cache` as value.  We get the line number so that we can give
        # that line number to the nodes we create by hand.
        lineno = next(parser.stream).lineno

        # now we parse a single expression that is used as cache key.
        args = [parser.parse_expression()]

        # if there is a comma, the user provided a timeout.  If not use
        # None as second parameter.
        if parser.stream.skip_if("comma"):
            args.append(parser.parse_expression())
        else:
            args.append(nodes.Const(None))

        # now we parse the body of the cache block up to `endcache` and
        # drop the needle (which would always be `endcache` in that case)
        body = parser.parse_statements(["name:endcache"], drop_needle=True)

        # now return a `CallBlock` node that calls our _cache_support
        # helper method on this extension.
        return nodes.CallBlock(
            self.call_method("_cache_support", args), [], [], body
        ).set_lineno(lineno)

    def _cache_support(self, name, timeout, caller):
        """Helper callback."""
        key = self.environment.fragment_cache_prefix + name

        # try to load the block from the cache
        # if there is no fragment in the cache, render it and store
        # it in the cache.
        rv = self.environment.fragment_cache.get(key)
        if rv is not None:
            return rv
        rv = caller()
        self.environment.fragment_cache.add(key, rv, timeout)
        return rv





And here is how you use it in an environment:

from jinja2 import Environment
from cachelib import SimpleCache

env = Environment(extensions=[FragmentCacheExtension])
env.fragment_cache = SimpleCache()





Inside the template it’s then possible to mark blocks as cacheable.  The
following example caches a sidebar for 300 seconds:

{% cache 'sidebar', 300 %}
<div class="sidebar">
    ...
</div>
{% endcache %}







Inline gettext

The following example demonstrates using Extension.filter_stream()
to parse calls to the _() gettext function inline with static data
without needing Jinja blocks.

<h1>_(Welcome)</h1>
<p>_(This is a paragraph)</p>





It requires the i18n extension to be loaded and configured.

import re

from jinja2.exceptions import TemplateSyntaxError
from jinja2.ext import Extension
from jinja2.lexer import count_newlines
from jinja2.lexer import Token


_outside_re = re.compile(r"\\?(gettext|_)\(")
_inside_re = re.compile(r"\\?[()]")


class InlineGettext(Extension):
    """This extension implements support for inline gettext blocks::

        <h1>_(Welcome)</h1>
        <p>_(This is a paragraph)</p>

    Requires the i18n extension to be loaded and configured.
    """

    def filter_stream(self, stream):
        paren_stack = 0

        for token in stream:
            if token.type != "data":
                yield token
                continue

            pos = 0
            lineno = token.lineno

            while True:
                if not paren_stack:
                    match = _outside_re.search(token.value, pos)
                else:
                    match = _inside_re.search(token.value, pos)
                if match is None:
                    break
                new_pos = match.start()
                if new_pos > pos:
                    preval = token.value[pos:new_pos]
                    yield Token(lineno, "data", preval)
                    lineno += count_newlines(preval)
                gtok = match.group()
                if gtok[0] == "\\":
                    yield Token(lineno, "data", gtok[1:])
                elif not paren_stack:
                    yield Token(lineno, "block_begin", None)
                    yield Token(lineno, "name", "trans")
                    yield Token(lineno, "block_end", None)
                    paren_stack = 1
                else:
                    if gtok == "(" or paren_stack > 1:
                        yield Token(lineno, "data", gtok)
                    paren_stack += -1 if gtok == ")" else 1
                    if not paren_stack:
                        yield Token(lineno, "block_begin", None)
                        yield Token(lineno, "name", "endtrans")
                        yield Token(lineno, "block_end", None)
                pos = match.end()

            if pos < len(token.value):
                yield Token(lineno, "data", token.value[pos:])

        if paren_stack:
            raise TemplateSyntaxError(
                "unclosed gettext expression",
                token.lineno,
                stream.name,
                stream.filename,
            )








Extension API


Extension

Extensions always have to extend the jinja2.ext.Extension class:


	
class jinja2.ext.Extension(environment)

	Extensions can be used to add extra functionality to the Jinja template
system at the parser level.  Custom extensions are bound to an environment
but may not store environment specific data on self.  The reason for
this is that an extension can be bound to another environment (for
overlays) by creating a copy and reassigning the environment attribute.

As extensions are created by the environment they cannot accept any
arguments for configuration.  One may want to work around that by using
a factory function, but that is not possible as extensions are identified
by their import name.  The correct way to configure the extension is
storing the configuration values on the environment.  Because this way the
environment ends up acting as central configuration storage the
attributes may clash which is why extensions have to ensure that the names
they choose for configuration are not too generic.  prefix for example
is a terrible name, fragment_cache_prefix on the other hand is a good
name as includes the name of the extension (fragment cache).


	Parameters:

	environment (Environment) – 






	
identifier

	The identifier of the extension.  This is always the true import name
of the extension class and must not be changed.






	
tags

	If the extension implements custom tags this is a set of tag names
the extension is listening for.






	
attr(name, lineno=None)

	Return an attribute node for the current extension.  This is useful
to pass constants on extensions to generated template code.

self.attr('_my_attribute', lineno=lineno)






	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	lineno (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – 






	Return type:

	ExtensionAttribute










	
call_method(name, args=None, kwargs=None, dyn_args=None, dyn_kwargs=None, lineno=None)

	Call a method of the extension.  This is a shortcut for
attr() + jinja2.nodes.Call.


	Parameters:

	
	name (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	args (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][Expr]]) – 


	kwargs (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][List [https://docs.python.org/3/library/typing.html#typing.List][Keyword]]) – 


	dyn_args (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Expr]) – 


	dyn_kwargs (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Expr]) – 


	lineno (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – 






	Return type:

	Call










	
filter_stream(stream)

	It’s passed a TokenStream that can be used
to filter tokens returned.  This method has to return an iterable of
Tokens, but it doesn’t have to return a
TokenStream.


	Parameters:

	stream (TokenStream) – 



	Return type:

	Union [https://docs.python.org/3/library/typing.html#typing.Union][TokenStream, Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Token]]










	
parse(parser)

	If any of the tags matched this method is called with the
parser as first argument.  The token the parser stream is pointing at
is the name token that matched.  This method has to return one or a
list of multiple nodes.


	Parameters:

	parser (Parser) – 



	Return type:

	Union [https://docs.python.org/3/library/typing.html#typing.Union][Node, List [https://docs.python.org/3/library/typing.html#typing.List][Node]]










	
preprocess(source, name, filename=None)

	This method is called before the actual lexing and can be used to
preprocess the source.  The filename is optional.  The return value
must be the preprocessed source.


	Parameters:

	
	source (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	name (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 


	filename (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 






	Return type:

	str [https://docs.python.org/3/library/stdtypes.html#str]















Parser

The parser passed to Extension.parse() provides ways to parse
expressions of different types.  The following methods may be used by
extensions:


	
class jinja2.parser.Parser(environment, source, name=None, filename=None, state=None)

	This is the central parsing class Jinja uses.  It’s passed to
extensions and can be used to parse expressions or statements.


	Parameters:

	
	environment (Environment) – 


	source (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	name (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 


	filename (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 


	state (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 









	
filename

	The filename of the template the parser processes.  This is not
the load name of the template.  For the load name see name.
For templates that were not loaded form the file system this is
None.






	
name

	The load name of the template.






	
stream

	The current TokenStream






	
fail(msg, lineno=None, exc=<class 'jinja2.exceptions.TemplateSyntaxError'>)

	Convenience method that raises exc with the message, passed
line number or last line number as well as the current name and
filename.


	Parameters:

	
	msg (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	lineno (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – 


	exc (Type [https://docs.python.org/3/library/typing.html#typing.Type][TemplateSyntaxError]) – 






	Return type:

	te.NoReturn










	
free_identifier(lineno=None)

	Return a new free identifier as InternalName.


	Parameters:

	lineno (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][int [https://docs.python.org/3/library/functions.html#int]]) – 



	Return type:

	InternalName










	
parse_assign_target(with_tuple=True, name_only=False, extra_end_rules=None, with_namespace=False)

	Parse an assignment target.  As Jinja allows assignments to
tuples, this function can parse all allowed assignment targets.  Per
default assignments to tuples are parsed, that can be disable however
by setting with_tuple to False.  If only assignments to names are
wanted name_only can be set to True.  The extra_end_rules
parameter is forwarded to the tuple parsing function.  If
with_namespace is enabled, a namespace assignment may be parsed.


	Parameters:

	
	with_tuple (bool [https://docs.python.org/3/library/functions.html#bool]) – 


	name_only (bool [https://docs.python.org/3/library/functions.html#bool]) – 


	extra_end_rules (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], ...]]) – 


	with_namespace (bool [https://docs.python.org/3/library/functions.html#bool]) – 






	Return type:

	Union [https://docs.python.org/3/library/typing.html#typing.Union][NSRef, Name, Tuple]










	
parse_expression(with_condexpr=True)

	Parse an expression.  Per default all expressions are parsed, if
the optional with_condexpr parameter is set to False conditional
expressions are not parsed.


	Parameters:

	with_condexpr (bool [https://docs.python.org/3/library/functions.html#bool]) – 



	Return type:

	Expr










	
parse_statements(end_tokens, drop_needle=False)

	Parse multiple statements into a list until one of the end tokens
is reached.  This is used to parse the body of statements as it also
parses template data if appropriate.  The parser checks first if the
current token is a colon and skips it if there is one.  Then it checks
for the block end and parses until if one of the end_tokens is
reached.  Per default the active token in the stream at the end of
the call is the matched end token.  If this is not wanted drop_needle
can be set to True and the end token is removed.


	Parameters:

	
	end_tokens (Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], ...]) – 


	drop_needle (bool [https://docs.python.org/3/library/functions.html#bool]) – 






	Return type:

	List [https://docs.python.org/3/library/typing.html#typing.List][Node]










	
parse_tuple(simplified=False, with_condexpr=True, extra_end_rules=None, explicit_parentheses=False)

	Works like parse_expression but if multiple expressions are
delimited by a comma a Tuple node is created.
This method could also return a regular expression instead of a tuple
if no commas where found.

The default parsing mode is a full tuple.  If simplified is True
only names and literals are parsed.  The no_condexpr parameter is
forwarded to parse_expression().

Because tuples do not require delimiters and may end in a bogus comma
an extra hint is needed that marks the end of a tuple.  For example
for loops support tuples between for and in.  In that case the
extra_end_rules is set to ['name:in'].

explicit_parentheses is true if the parsing was triggered by an
expression in parentheses.  This is used to figure out if an empty
tuple is a valid expression or not.


	Parameters:

	
	simplified (bool [https://docs.python.org/3/library/functions.html#bool]) – 


	with_condexpr (bool [https://docs.python.org/3/library/functions.html#bool]) – 


	extra_end_rules (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], ...]]) – 


	explicit_parentheses (bool [https://docs.python.org/3/library/functions.html#bool]) – 






	Return type:

	Union [https://docs.python.org/3/library/typing.html#typing.Union][Tuple, Expr]














	
class jinja2.lexer.TokenStream(generator, name, filename)

	A token stream is an iterable that yields Tokens.  The
parser however does not iterate over it but calls next() to go
one token ahead.  The current active token is stored as current.


	Parameters:

	
	generator (Iterable [https://docs.python.org/3/library/typing.html#typing.Iterable][Token]) – 


	name (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 


	filename (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][str [https://docs.python.org/3/library/stdtypes.html#str]]) – 









	
current

	The current Token.






	
__next__()

	Go one token ahead and return the old one.

Use the built-in next() [https://docs.python.org/3/library/functions.html#next] instead of calling this directly.


	Return type:

	Token










	
property eos: bool [https://docs.python.org/3/library/functions.html#bool]

	Are we at the end of the stream?






	
expect(expr)

	Expect a given token type and return it.  This accepts the same
argument as jinja2.lexer.Token.test().


	Parameters:

	expr (str [https://docs.python.org/3/library/stdtypes.html#str]) – 



	Return type:

	Token










	
look()

	Look at the next token.


	Return type:

	Token










	
next_if(expr)

	Perform the token test and return the token if it matched.
Otherwise the return value is None.


	Parameters:

	expr (str [https://docs.python.org/3/library/stdtypes.html#str]) – 



	Return type:

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Token]










	
push(token)

	Push a token back to the stream.


	Parameters:

	token (Token) – 



	Return type:

	None










	
skip(n=1)

	Got n tokens ahead.


	Parameters:

	n (int [https://docs.python.org/3/library/functions.html#int]) – 



	Return type:

	None










	
skip_if(expr)

	Like next_if() but only returns True or False.


	Parameters:

	expr (str [https://docs.python.org/3/library/stdtypes.html#str]) – 



	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]














	
class jinja2.lexer.Token(lineno, type, value)

	
	Parameters:

	
	lineno (int [https://docs.python.org/3/library/functions.html#int]) – 


	type (str [https://docs.python.org/3/library/stdtypes.html#str]) – 


	value (str [https://docs.python.org/3/library/stdtypes.html#str]) – 









	
lineno

	The line number of the token






	
type

	The type of the token.  This string is interned so you may compare
it with arbitrary strings using the is operator.






	
value

	The value of the token.






	
test(expr)

	Test a token against a token expression.  This can either be a
token type or 'token_type:token_value'.  This can only test
against string values and types.


	Parameters:

	expr (str [https://docs.python.org/3/library/stdtypes.html#str]) – 



	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]










	
test_any(*iterable)

	Test against multiple token expressions.


	Parameters:

	iterable (str [https://docs.python.org/3/library/stdtypes.html#str]) – 



	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]













There is also a utility function in the lexer module that can count newline
characters in strings:


	
jinja2.lexer.count_newlines(value)

	Count the number of newline characters in the string.  This is
useful for extensions that filter a stream.


	Parameters:

	value (str [https://docs.python.org/3/library/stdtypes.html#str]) – 



	Return type:

	int [https://docs.python.org/3/library/functions.html#int]











AST

The AST (Abstract Syntax Tree) is used to represent a template after parsing.
It’s build of nodes that the compiler then converts into executable Python
code objects.  Extensions that provide custom statements can return nodes to
execute custom Python code.

The list below describes all nodes that are currently available.  The AST may
change between Jinja versions but will stay backwards compatible.

For more information have a look at the repr of jinja2.Environment.parse().


	
class jinja2.nodes.Node

	Baseclass for all Jinja nodes.  There are a number of nodes available
of different types.  There are four major types:


	Stmt: statements


	Expr: expressions


	Helper: helper nodes


	Template: the outermost wrapper node




All nodes have fields and attributes.  Fields may be other nodes, lists,
or arbitrary values.  Fields are passed to the constructor as regular
positional arguments, attributes as keyword arguments.  Each node has
two attributes: lineno (the line number of the node) and environment.
The environment attribute is set at the end of the parsing process for
all nodes automatically.


	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 









	
find(node_type)

	Find the first node of a given type.  If no such node exists the
return value is None.


	Parameters:

	node_type (Type [https://docs.python.org/3/library/typing.html#typing.Type][_NodeBound]) – 



	Return type:

	Optional [https://docs.python.org/3/library/typing.html#typing.Optional][_NodeBound]










	
find_all(node_type)

	Find all the nodes of a given type.  If the type is a tuple,
the check is performed for any of the tuple items.


	Parameters:

	node_type (Union [https://docs.python.org/3/library/typing.html#typing.Union][Type [https://docs.python.org/3/library/typing.html#typing.Type][_NodeBound], Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][Type [https://docs.python.org/3/library/typing.html#typing.Type][_NodeBound], ...]]) – 



	Return type:

	Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][_NodeBound]










	
iter_child_nodes(exclude=None, only=None)

	Iterates over all direct child nodes of the node.  This iterates
over all fields and yields the values of they are nodes.  If the value
of a field is a list all the nodes in that list are returned.


	Parameters:

	
	exclude (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Container [https://docs.python.org/3/library/typing.html#typing.Container][str [https://docs.python.org/3/library/stdtypes.html#str]]]) – 


	only (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Container [https://docs.python.org/3/library/typing.html#typing.Container][str [https://docs.python.org/3/library/stdtypes.html#str]]]) – 






	Return type:

	Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][Node]










	
iter_fields(exclude=None, only=None)

	This method iterates over all fields that are defined and yields
(key, value) tuples.  Per default all fields are returned, but
it’s possible to limit that to some fields by providing the only
parameter or to exclude some using the exclude parameter.  Both
should be sets or tuples of field names.


	Parameters:

	
	exclude (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Container [https://docs.python.org/3/library/typing.html#typing.Container][str [https://docs.python.org/3/library/stdtypes.html#str]]]) – 


	only (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][Container [https://docs.python.org/3/library/typing.html#typing.Container][str [https://docs.python.org/3/library/stdtypes.html#str]]]) – 






	Return type:

	Iterator [https://docs.python.org/3/library/typing.html#typing.Iterator][Tuple [https://docs.python.org/3/library/typing.html#typing.Tuple][str [https://docs.python.org/3/library/stdtypes.html#str], Any [https://docs.python.org/3/library/typing.html#typing.Any]]]










	
set_ctx(ctx)

	Reset the context of a node and all child nodes.  Per default the
parser will all generate nodes that have a ‘load’ context as it’s the
most common one.  This method is used in the parser to set assignment
targets and other nodes to a store context.


	Parameters:

	ctx (str [https://docs.python.org/3/library/stdtypes.html#str]) – 



	Return type:

	Node










	
set_environment(environment)

	Set the environment for all nodes.


	Parameters:

	environment (Environment) – 



	Return type:

	Node










	
set_lineno(lineno, override=False)

	Set the line numbers of the node and children.


	Parameters:

	
	lineno (int [https://docs.python.org/3/library/functions.html#int]) – 


	override (bool [https://docs.python.org/3/library/functions.html#bool]) – 






	Return type:

	Node














	
class jinja2.nodes.Expr

	Baseclass for all expressions.


	Node type:

	Node



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 









	
as_const(eval_ctx=None)

	Return the value of the expression as constant or raise
Impossible if this was not possible.

An EvalContext can be provided, if none is given
a default context is created which requires the nodes to have
an attached environment.


Changelog
Changed in version 2.4: the eval_ctx parameter was added.




	Parameters:

	eval_ctx (Optional [https://docs.python.org/3/library/typing.html#typing.Optional][EvalContext]) – 



	Return type:

	Any [https://docs.python.org/3/library/typing.html#typing.Any]










	
can_assign()

	Check if it’s possible to assign something to this node.


	Return type:

	bool [https://docs.python.org/3/library/functions.html#bool]














	
class jinja2.nodes._FilterTestCommon(node, name, args, kwargs, dyn_args, dyn_kwargs)

	
	Node type:

	Expr



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.Filter(node, name, args, kwargs, dyn_args, dyn_kwargs)

	Apply a filter to an expression. name is the name of the
filter, the other fields are the same as Call.

If node is None, the filter is being used in a filter block
and is applied to the content of the block.


	Node type:

	_FilterTestCommon



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.Test(node, name, args, kwargs, dyn_args, dyn_kwargs)

	Apply a test to an expression. name is the name of the test,
the other field are the same as Call.


Changelog
Changed in version 3.0: as_const shares the same logic for filters and tests. Tests
check for volatile, async, and @pass_context etc.
decorators.




	Node type:

	_FilterTestCommon



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.BinExpr(left, right)

	Baseclass for all binary expressions.


	Node type:

	Expr



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.Add(left, right)

	Add the left to the right node.


	Node type:

	BinExpr



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.And(left, right)

	Short circuited AND.


	Node type:

	BinExpr



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.Div(left, right)

	Divides the left by the right node.


	Node type:

	BinExpr



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.FloorDiv(left, right)

	Divides the left by the right node and converts the
result into an integer by truncating.


	Node type:

	BinExpr



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.Mod(left, right)

	Left modulo right.


	Node type:

	BinExpr



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.Mul(left, right)

	Multiplies the left with the right node.


	Node type:

	BinExpr



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.Or(left, right)

	Short circuited OR.


	Node type:

	BinExpr



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.Pow(left, right)

	Left to the power of right.


	Node type:

	BinExpr



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.Sub(left, right)

	Subtract the right from the left node.


	Node type:

	BinExpr



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.Call(node, args, kwargs, dyn_args, dyn_kwargs)

	Calls an expression.  args is a list of arguments, kwargs a list
of keyword arguments (list of Keyword nodes), and dyn_args
and dyn_kwargs has to be either None or a node that is used as
node for dynamic positional (*args) or keyword (**kwargs)
arguments.


	Node type:

	Expr



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.Compare(expr, ops)

	Compares an expression with some other expressions.  ops must be a
list of Operands.


	Node type:

	Expr



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.Concat(nodes)

	Concatenates the list of expressions provided after converting
them to strings.


	Node type:

	Expr



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.CondExpr(test, expr1, expr2)

	A conditional expression (inline if expression).  ({{
foo if bar else baz }})


	Node type:

	Expr



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.ContextReference

	Returns the current template context.  It can be used like a
Name node, with a 'load' ctx and will return the
current Context object.

Here an example that assigns the current template name to a
variable named foo:

Assign(Name('foo', ctx='store'),
       Getattr(ContextReference(), 'name'))





This is basically equivalent to using the
pass_context() decorator when using the high-level
API, which causes a reference to the context to be passed as the
first argument to a function.


	Node type:

	Expr



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.DerivedContextReference

	Return the current template context including locals. Behaves
exactly like ContextReference, but includes local
variables, such as from a for loop.


Changelog
New in version 2.11.




	Node type:

	Expr



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.EnvironmentAttribute(name)

	Loads an attribute from the environment object.  This is useful for
extensions that want to call a callback stored on the environment.


	Node type:

	Expr



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.ExtensionAttribute(identifier, name)

	Returns the attribute of an extension bound to the environment.
The identifier is the identifier of the Extension.

This node is usually constructed by calling the
attr() method on an extension.


	Node type:

	Expr



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.Getattr(node, attr, ctx)

	Get an attribute or item from an expression that is a ascii-only
bytestring and prefer the attribute.


	Node type:

	Expr



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.Getitem(node, arg, ctx)

	Get an attribute or item from an expression and prefer the item.


	Node type:

	Expr



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.ImportedName(importname)

	If created with an import name the import name is returned on node
access.  For example ImportedName('cgi.escape') returns the escape
function from the cgi module on evaluation.  Imports are optimized by the
compiler so there is no need to assign them to local variables.


	Node type:

	Expr



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.InternalName(name)

	An internal name in the compiler.  You cannot create these nodes
yourself but the parser provides a
free_identifier() method that creates
a new identifier for you.  This identifier is not available from the
template and is not treated specially by the compiler.


	Node type:

	Expr










	
class jinja2.nodes.Literal

	Baseclass for literals.


	Node type:

	Expr



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.Const(value)

	All constant values.  The parser will return this node for simple
constants such as 42 or "foo" but it can be used to store more
complex values such as lists too.  Only constants with a safe
representation (objects where eval(repr(x)) == x is true).


	Node type:

	Literal



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.Dict(items)

	Any dict literal such as {1: 2, 3: 4}.  The items must be a list of
Pair nodes.


	Node type:

	Literal



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.List(items)

	Any list literal such as [1, 2, 3]


	Node type:

	Literal



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.TemplateData(data)

	A constant template string.


	Node type:

	Literal



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.Tuple(items, ctx)

	For loop unpacking and some other things like multiple arguments
for subscripts.  Like for Name ctx specifies if the tuple
is used for loading the names or storing.


	Node type:

	Literal



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.MarkSafe(expr)

	Mark the wrapped expression as safe (wrap it as Markup).


	Node type:

	Expr



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.MarkSafeIfAutoescape(expr)

	Mark the wrapped expression as safe (wrap it as Markup) but
only if autoescaping is active.


Changelog
New in version 2.5.




	Node type:

	Expr



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.Name(name, ctx)

	Looks up a name or stores a value in a name.
The ctx of the node can be one of the following values:


	store: store a value in the name


	load: load that name


	param: like store but if the name was defined as function parameter.





	Node type:

	Expr



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.NSRef(name, attr)

	Reference to a namespace value assignment


	Node type:

	Expr



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.Slice(start, stop, step)

	Represents a slice object.  This must only be used as argument for
Subscript.


	Node type:

	Expr



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.UnaryExpr(node)

	Baseclass for all unary expressions.


	Node type:

	Expr



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.Neg(node)

	Make the expression negative.


	Node type:

	UnaryExpr



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.Not(node)

	Negate the expression.


	Node type:

	UnaryExpr



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.Pos(node)

	Make the expression positive (noop for most expressions)


	Node type:

	UnaryExpr



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.Helper

	Nodes that exist in a specific context only.


	Node type:

	Node



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.Keyword(key, value)

	A key, value pair for keyword arguments where key is a string.


	Node type:

	Helper



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.Operand(op, expr)

	Holds an operator and an expression.


	Node type:

	Helper



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.Pair(key, value)

	A key, value pair for dicts.


	Node type:

	Helper



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.Stmt

	Base node for all statements.


	Node type:

	Node



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.Assign(target, node)

	Assigns an expression to a target.


	Node type:

	Stmt



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.AssignBlock(target, filter, body)

	Assigns a block to a target.


	Node type:

	Stmt



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.Block(name, body, scoped, required)

	A node that represents a block.


Changelog
Changed in version 3.0.0: the required field was added.




	Node type:

	Stmt



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.Break

	Break a loop.


	Node type:

	Stmt



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.CallBlock(call, args, defaults, body)

	Like a macro without a name but a call instead.  call is called with
the unnamed macro as caller argument this node holds.


	Node type:

	Stmt



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.Continue

	Continue a loop.


	Node type:

	Stmt



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.EvalContextModifier(options)

	Modifies the eval context.  For each option that should be modified,
a Keyword has to be added to the options list.

Example to change the autoescape setting:

EvalContextModifier(options=[Keyword('autoescape', Const(True))])






	Node type:

	Stmt



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.ScopedEvalContextModifier(options, body)

	Modifies the eval context and reverts it later.  Works exactly like
EvalContextModifier but will only modify the
EvalContext for nodes in the body.


	Node type:

	EvalContextModifier



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.ExprStmt(node)

	A statement that evaluates an expression and discards the result.


	Node type:

	Stmt



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.Extends(template)

	Represents an extends statement.


	Node type:

	Stmt



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.FilterBlock(body, filter)

	Node for filter sections.


	Node type:

	Stmt



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.For(target, iter, body, else_, test, recursive)

	The for loop.  target is the target for the iteration (usually a
Name or Tuple), iter the iterable.  body is a list
of nodes that are used as loop-body, and else_ a list of nodes for the
else block.  If no else node exists it has to be an empty list.

For filtered nodes an expression can be stored as test, otherwise None.


	Node type:

	Stmt



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.FromImport(template, names, with_context)

	A node that represents the from import tag.  It’s important to not
pass unsafe names to the name attribute.  The compiler translates the
attribute lookups directly into getattr calls and does not use the
subscript callback of the interface.  As exported variables may not
start with double underscores (which the parser asserts) this is not a
problem for regular Jinja code, but if this node is used in an extension
extra care must be taken.

The list of names may contain tuples if aliases are wanted.


	Node type:

	Stmt



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.If(test, body, elif_, else_)

	If test is true, body is rendered, else else_.


	Node type:

	Stmt



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.Import(template, target, with_context)

	A node that represents the import tag.


	Node type:

	Stmt



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.Include(template, with_context, ignore_missing)

	A node that represents the include tag.


	Node type:

	Stmt



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.Macro(name, args, defaults, body)

	A macro definition.  name is the name of the macro, args a list of
arguments and defaults a list of defaults if there are any.  body is
a list of nodes for the macro body.


	Node type:

	Stmt



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.Output(nodes)

	A node that holds multiple expressions which are then printed out.
This is used both for the print statement and the regular template data.


	Node type:

	Stmt



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.OverlayScope(context, body)

	An overlay scope for extensions.  This is a largely unoptimized scope
that however can be used to introduce completely arbitrary variables into
a sub scope from a dictionary or dictionary like object.  The context
field has to evaluate to a dictionary object.

Example usage:

OverlayScope(context=self.call_method('get_context'),
             body=[...])






Changelog
New in version 2.10.




	Node type:

	Stmt



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.Scope(body)

	An artificial scope.


	Node type:

	Stmt



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.With(targets, values, body)

	Specific node for with statements.  In older versions of Jinja the
with statement was implemented on the base of the Scope node instead.


Changelog
New in version 2.9.3.




	Node type:

	Stmt



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
class jinja2.nodes.Template(body)

	Node that represents a template.  This must be the outermost node that
is passed to the compiler.


	Node type:

	Node



	Parameters:

	
	fields (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 


	attributes (Any [https://docs.python.org/3/library/typing.html#typing.Any]) – 













	
exception jinja2.nodes.Impossible

	Raised if the node could not perform a requested action.










            

          

      

      

    

  

    
      
          
            
  
Integration


Flask

The Flask [https://flask.palletsprojects.com] web application framework, also maintained by Pallets, uses
Jinja templates by default. Flask sets up a Jinja environment and
template loader for you, and provides functions to easily render
templates from view functions.



Django

Django supports using Jinja as its template engine, see
https://docs.djangoproject.com/en/stable/topics/templates/#support-for-template-engines.



Babel

Jinja provides support for extracting gettext messages from templates
via a Babel [https://babel.readthedocs.io/] extractor entry point called
jinja2.ext.babel_extract. The support is implemented as part of the
i18n Extension extension.

Gettext messages are extracted from both trans tags and code
expressions.

To extract gettext messages from templates, the project needs a Jinja
section in its Babel extraction method mapping file [https://babel.readthedocs.io/en/latest/messages.html#extraction-method-mapping-and-configuration]:

[jinja2: **/templates/**.html]
encoding = utf-8





The syntax related options of the Environment are also
available as configuration values in the mapping file. For example, to
tell the extractor that templates use % as
line_statement_prefix you can use this code:

[jinja2: **/templates/**.html]
encoding = utf-8
line_statement_prefix = %





Extensions may also be defined by passing a comma separated
list of import paths as the extensions value. The i18n extension is
added automatically.

Template syntax errors are ignored by default. The assumption is that
tests will catch syntax errors in templates. If you don’t want to ignore
errors, add silent = false to the settings.



Pylons

It’s easy to integrate Jinja into a Pylons [https://pylonshq.com/] application.

The template engine is configured in config/environment.py. The
configuration for Jinja looks something like this:

from jinja2 import Environment, PackageLoader
config['pylons.app_globals'].jinja_env = Environment(
    loader=PackageLoader('yourapplication', 'templates')
)





After that you can render Jinja templates by using the render_jinja
function from the pylons.templating module.

Additionally it’s a good idea to set the Pylons c object to strict
mode. By default attribute access on missing attributes on the c
object returns an empty string and not an undefined object. To change
this add this to config/environment.py:

config['pylons.strict_c'] = True









            

          

      

      

    

  

    
      
          
            
  
Switching From Other Template Engines

This is a brief guide on some of the differences between Jinja syntax
and other template languages. See Template Designer Documentation for a comprehensive
guide to Jinja syntax and features.


Django

If you have previously worked with Django templates, you should find
Jinja very familiar. Many of the syntax elements look and work the same.
However, Jinja provides some more syntax elements, and some work a bit
differently.

This section covers the template changes. The API, including extension
support, is fundamentally different so it won’t be covered here.

Django supports using Jinja as its template engine, see
https://docs.djangoproject.com/en/stable/topics/templates/#support-for-template-engines.


Method Calls

In Django, methods are called implicitly, without parentheses.

{% for page in user.get_created_pages %}
    ...
{% endfor %}





In Jinja, using parentheses is required for calls, like in Python. This
allows you to pass variables to the method, which is not possible
in Django. This syntax is also used for calling macros.

{% for page in user.get_created_pages() %}
    ...
{% endfor %}







Filter Arguments

In Django, one literal value can be passed to a filter after a colon.

{{ items|join:", " }}





In Jinja, filters can take any number of positional and keyword
arguments in parentheses, like function calls. Arguments can also be
variables instead of literal values.

{{ items|join(", ") }}







Tests

In addition to filters, Jinja also has “tests” used with the is
operator. This operator is not the same as the Python operator.

{% if user.user_id is odd %}
    {{ user.username|e }} is odd
{% else %}
    hmm. {{ user.username|e }} looks pretty normal
{% endif %}







Loops

In Django, the special variable for the loop context is called
forloop, and the empty is used for no loop items.

{% for item in items %}
    {{ item }}
{% empty %}
    No items!
{% endfor %}





In Jinja, the special variable for the loop context is called loop,
and the else block is used for no loop items.

{% for item in items %}
    {{ loop.index}}. {{ item }}
{% else %}
    No items!
{% endfor %}







Cycle

In Django, the {% cycle %} can be used in a for loop to alternate
between values per loop.

{% for user in users %}
    <li class="{% cycle 'odd' 'even' %}">{{ user }}</li>
{% endfor %}





In Jinja, the loop context has a cycle method.

{% for user in users %}
    <li class="{{ loop.cycle('odd', 'even') }}">{{ user }}</li>
{% endfor %}





A cycler can also be assigned to a variable and used outside or across
loops with the cycle() global function.




Mako

You can configure Jinja to look more like Mako:

env = Environment(
    block_start_string="<%",
    block_end_string="%>",
    variable_start_string="${",
    variable_end_string="}",
    comment_start_string="<%doc>",
    commend_end_string="</%doc>",
    line_statement_prefix="%",
    line_comment_prefix="##",
)





With an environment configured like that, Jinja should be able to
interpret a small subset of Mako templates without any changes.

Jinja does not support embedded Python code, so you would have to move
that out of the template. You could either process the data with the
same code before rendering, or add a global function or filter to the
Jinja environment.

The syntax for defs (which are called macros in Jinja) and template
inheritance is different too.

The following Mako template:

<%inherit file="layout.html" />
<%def name="title()">Page Title</%def>
<ul>
% for item in list:
    <li>${item}</li>
% endfor
</ul>





Looks like this in Jinja with the above configuration:

<% extends "layout.html" %>
<% block title %>Page Title<% endblock %>
<% block body %>
<ul>
% for item in list:
    <li>${item}</li>
% endfor
</ul>
<% endblock %>









            

          

      

      

    

  

    
      
          
            
  
Tips and Tricks

This part of the documentation shows some tips and tricks for Jinja
templates.


Null-Default Fallback

Jinja supports dynamic inheritance and does not distinguish between parent
and child template as long as no extends tag is visited.  While this leads
to the surprising behavior that everything before the first extends tag
including whitespace is printed out instead of being ignored, it can be used
for a neat trick.

Usually child templates extend from one template that adds a basic HTML
skeleton.  However it’s possible to put the extends tag into an if tag to
only extend from the layout template if the standalone variable evaluates
to false which it does per default if it’s not defined.  Additionally a very
basic skeleton is added to the file so that if it’s indeed rendered with
standalone set to True a very basic HTML skeleton is added:

{% if not standalone %}{% extends 'default.html' %}{% endif -%}
<!DOCTYPE html>
<title>{% block title %}The Page Title{% endblock %}</title>
<link rel="stylesheet" href="style.css" type="text/css">
{% block body %}
  <p>This is the page body.</p>
{% endblock %}







Alternating Rows

If you want to have different styles for each row of a table or
list you can use the cycle method on the loop object:

<ul>
{% for row in rows %}
  <li class="{{ loop.cycle('odd', 'even') }}">{{ row }}</li>
{% endfor %}
</ul>





cycle can take an unlimited number of strings.  Each time this
tag is encountered the next item from the list is rendered.



Highlighting Active Menu Items

Often you want to have a navigation bar with an active navigation
item.  This is really simple to achieve.  Because assignments outside
of blocks in child templates are global and executed before the layout
template is evaluated it’s possible to define the active menu item in the
child template:

{% extends "layout.html" %}
{% set active_page = "index" %}





The layout template can then access active_page.  Additionally it makes
sense to define a default for that variable:

{% set navigation_bar = [
    ('/', 'index', 'Index'),
    ('/downloads/', 'downloads', 'Downloads'),
    ('/about/', 'about', 'About')
] -%}
{% set active_page = active_page|default('index') -%}
...
<ul id="navigation">
{% for href, id, caption in navigation_bar %}
  <li{% if id == active_page %} class="active"{% endif %}>
  <a href="{{ href|e }}">{{ caption|e }}</a></li>
{% endfor %}
</ul>
...







Accessing the parent Loop

The special loop variable always points to the innermost loop.  If it’s
desired to have access to an outer loop it’s possible to alias it:

<table>
{% for row in table %}
  <tr>
  {% set rowloop = loop %}
  {% for cell in row %}
    <td id="cell-{{ rowloop.index }}-{{ loop.index }}">{{ cell }}</td>
  {% endfor %}
  </tr>
{% endfor %}
</table>









            

          

      

      

    

  

    
      
          
            
  
Frequently Asked Questions


Why is it called Jinja?

“Jinja” is a Japanese Shinto shrine [https://en.wikipedia.org/wiki/Shinto_shrine], or temple, and temple and
template share a similar English pronunciation. It is not named after
the city in Uganda [https://en.wikipedia.org/wiki/Jinja%2C_Uganda].



How fast is Jinja?

Jinja is relatively fast among template engines because it compiles and
caches template code to Python code, so that the template does not need
to be parsed and interpreted each time. Rendering a template becomes as
close to executing a Python function as possible.

Jinja also makes extensive use of caching. Templates are cached by name
after loading, so future uses of the template avoid loading. The
template loading itself uses a bytecode cache to avoid repeated
compiling. The caches can be external to persist across restarts.
Templates can also be precompiled and loaded as fast Python imports.

We dislike benchmarks because they don’t reflect real use. Performance
depends on many factors. Different engines have different default
configurations and tradeoffs that make it unclear how to set up a useful
comparison. Often, database access, API calls, and data processing have
a much larger effect on performance than the template engine.



Isn’t it a bad idea to put logic in templates?

Without a doubt you should try to remove as much logic from templates as
possible. With less logic, the template is easier to understand, has
fewer potential side effects, and is faster to compile and render. But a
template without any logic means processing must be done in code before
rendering. A template engine that does that is shipped with Python,
called string.Template [https://docs.python.org/3/library/string.html#string.Template], and while it’s definitely fast it’s not
convenient.

Jinja’s features such as blocks, statements, filters, and function calls
make it much easier to write expressive templates, with very few
restrictions. Jinja doesn’t allow arbitrary Python code in templates, or
every feature available in the Python language. This keeps the engine
easier to maintain, and keeps templates more readable.

Some amount of logic is required in templates to keep everyone happy.
Too much logic in the template can make it complex to reason about and
maintain. It’s up to you to decide how your application will work and
balance how much logic you want to put in the template.



Why is HTML escaping not the default?

Jinja provides a feature that can be enabled to escape HTML syntax in
rendered templates. However, it is disabled by default.

Jinja is a general purpose template engine, it is not only used for HTML
documents. You can generate plain text, LaTeX, emails, CSS, JavaScript,
configuration files, etc. HTML escaping wouldn’t make sense for any of
these document types.

While automatic escaping means that you are less likely have an XSS
problem, it also requires significant extra processing during compiling
and rendering, which can reduce performance. Jinja uses MarkupSafe for
escaping, which provides optimized C code for speed, but it still
introduces overhead to track escaping across methods and formatting.





            

          

      

      

    

  

    
      
          
            
  
BSD-3-Clause License

Copyright 2007 Pallets

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:


	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.


	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.


	Neither the name of the copyright holder nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.




THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.




            

          

      

      

    

  

    
      
          
            
  
Changes


Version 3.2.0

Unreleased



Version 3.1.2

Released 2022-04-28


	Add parameters to Environment.overlay to match __init__.
#1645 [https://github.com/pallets/jinja/issues/1645]


	Handle race condition in FileSystemBytecodeCache. #1654 [https://github.com/pallets/jinja/issues/1654]






Version 3.1.1

Released 2022-03-25


	The template filename on Windows uses the primary path separator.
#1637 [https://github.com/pallets/jinja/issues/1637]






Version 3.1.0

Released 2022-03-24


	Drop support for Python 3.6. #1534 [https://github.com/pallets/jinja/pull/1534]


	Remove previously deprecated code. #1544 [https://github.com/pallets/jinja/pull/1544]


	WithExtension and AutoEscapeExtension are built-in now.


	contextfilter and contextfunction are replaced by
pass_context. evalcontextfilter and
evalcontextfunction are replaced by pass_eval_context.
environmentfilter and environmentfunction are replaced
by pass_environment.


	Markup and escape should be imported from MarkupSafe.


	Compiled templates from very old Jinja versions may need to be
recompiled.


	Legacy resolve mode for Context subclasses is no longer
supported. Override resolve_or_missing instead of
resolve.


	unicode_urlencode is renamed to url_quote.






	Add support for native types in macros. #1510 [https://github.com/pallets/jinja/issues/1510]


	The {% trans %} tag can use pgettext and npgettext by
passing a context string as the first token in the tag, like
{% trans "title" %}. #1430 [https://github.com/pallets/jinja/issues/1430]


	Update valid identifier characters from Python 3.6 to 3.7.
#1571 [https://github.com/pallets/jinja/pull/1571]


	Filters and tests decorated with @async_variant are pickleable.
#1612 [https://github.com/pallets/jinja/pull/1612]


	Add items filter. #1561 [https://github.com/pallets/jinja/issues/1561]


	Subscriptions ([0], etc.) can be used after filters, tests, and
calls when the environment is in async mode. #1573 [https://github.com/pallets/jinja/issues/1573]


	The groupby filter is case-insensitive by default, matching
other comparison filters. Added the case_sensitive parameter to
control this. #1463 [https://github.com/pallets/jinja/issues/1463]


	Windows drive-relative path segments in template names will not
result in FileSystemLoader and PackageLoader loading from
drive-relative paths. #1621 [https://github.com/pallets/jinja/pull/1621]






Version 3.0.3

Released 2021-11-09


	Fix traceback rewriting internals for Python 3.10 and 3.11.
#1535 [https://github.com/pallets/jinja/issues/1535]


	Fix how the native environment treats leading and trailing spaces
when parsing values on Python 3.10. #1537 [https://github.com/pallets/jinja/pull/1537]


	Improve async performance by avoiding checks for common types.
#1514 [https://github.com/pallets/jinja/issues/1514]


	Revert change to hash(Node) behavior. Nodes are hashed by id
again #1521 [https://github.com/pallets/jinja/issues/1521]


	PackageLoader works when the package is a single module file.
#1512 [https://github.com/pallets/jinja/issues/1512]






Version 3.0.2

Released 2021-10-04


	Fix a loop scoping bug that caused assignments in nested loops
to still be referenced outside of it. #1427 [https://github.com/pallets/jinja/issues/1427]


	Make compile_templates deterministic for filter and import
names. #1452 [https://github.com/pallets/jinja/issues/1452], #1453 [https://github.com/pallets/jinja/issues/1453]


	Revert an unintended change that caused Undefined to act like
StrictUndefined for the in operator. #1448 [https://github.com/pallets/jinja/issues/1448]


	Imported macros have access to the current template globals in async
environments. #1494 [https://github.com/pallets/jinja/issues/1494]


	PackageLoader will not include a current directory (.) path
segment. This allows loading templates from the root of a zip
import. #1467 [https://github.com/pallets/jinja/issues/1467]






Version 3.0.1

Released 2021-05-18


	Update MarkupSafe dependency to >= 2.0. #1418 [https://github.com/pallets/jinja/pull/1418]


	Mark top-level names as exported so type checking understands
imports in user projects. #1426 [https://github.com/pallets/jinja/issues/1426]


	Fix some types that weren’t available in Python 3.6.0. #1433 [https://github.com/pallets/jinja/issues/1433]


	The deprecation warning for unneeded autoescape and with_
extensions shows more relevant context. #1429 [https://github.com/pallets/jinja/issues/1429]


	Fixed calling deprecated jinja2.Markup without an argument.
Use markupsafe.Markup instead. #1438 [https://github.com/pallets/jinja/issues/1438]


	Calling sync render for an async template uses asyncio.run
on Python >= 3.7. This fixes a deprecation that Python 3.10
introduces. #1443 [https://github.com/pallets/jinja/issues/1443]






Version 3.0.0

Released 2021-05-11


	Drop support for Python 2.7 and 3.5.


	Bump MarkupSafe dependency to >=1.1.


	Bump Babel optional dependency to >=2.1.


	Remove code that was marked deprecated.


	Add type hinting. #1412 [https://github.com/pallets/jinja/pull/1412]


	Use PEP 451 [https://peps.python.org/pep-0451/] API to load templates with
PackageLoader. #1168 [https://github.com/pallets/jinja/issues/1168]


	Fix a bug that caused imported macros to not have access to the
current template’s globals. #688 [https://github.com/pallets/jinja/issues/688]


	Add ability to ignore trim_blocks using +%}. #1036 [https://github.com/pallets/jinja/issues/1036]


	Fix a bug that caused custom async-only filters to fail with
constant input. #1279 [https://github.com/pallets/jinja/issues/1279]


	Fix UndefinedError incorrectly being thrown on an undefined variable
instead of Undefined being returned on
NativeEnvironment on Python 3.10. #1335 [https://github.com/pallets/jinja/issues/1335]


	Blocks can be marked as required. They must be overridden at
some point, but not necessarily by the direct child. #1147 [https://github.com/pallets/jinja/issues/1147]


	Deprecate the autoescape and with extensions, they are
built-in to the compiler. #1203 [https://github.com/pallets/jinja/issues/1203]


	The urlize filter recognizes mailto: links and takes
extra_schemes (or env.policies["urlize.extra_schemes"]) to
recognize other schemes. It tries to balance parentheses within a
URL instead of ignoring trailing characters. The parsing in general
has been updated to be more efficient and match more cases. URLs
without a scheme are linked as https:// instead of http://.
#522 [https://github.com/pallets/jinja/issues/522], #827 [https://github.com/pallets/jinja/issues/827], #1172 [https://github.com/pallets/jinja/issues/1172], #1195 [https://github.com/pallets/jinja/pull/1195]


	Filters that get attributes, such as map and groupby, can
use a false or empty value as a default. #1331 [https://github.com/pallets/jinja/issues/1331]


	Fix a bug that prevented variables set in blocks or loops from
being accessed in custom context functions. #768 [https://github.com/pallets/jinja/issues/768]


	Fix a bug that caused scoped blocks from accessing special loop
variables. #1088 [https://github.com/pallets/jinja/issues/1088]


	Update the template globals when calling
Environment.get_template(globals=...) even if the template was
already loaded. #295 [https://github.com/pallets/jinja/issues/295]


	Do not raise an error for undefined filters in unexecuted
if-statements and conditional expressions. #842 [https://github.com/pallets/jinja/issues/842]


	Add is filter and is test tests to test if a name is a
registered filter or test. This allows checking if a filter is
available in a template before using it. Test functions can be
decorated with @pass_environment, @pass_eval_context,
or @pass_context. #842 [https://github.com/pallets/jinja/issues/842], #1248 [https://github.com/pallets/jinja/pull/1248]


	Support pgettext and npgettext (message contexts) in i18n
extension. #441 [https://github.com/pallets/jinja/issues/441]


	The |indent filter’s width argument can be a string to
indent by. #1167 [https://github.com/pallets/jinja/pull/1167]


	The parser understands hex, octal, and binary integer literals.
#1170 [https://github.com/pallets/jinja/issues/1170]


	Undefined.__contains__ (in) raises an UndefinedError
instead of a TypeError. #1198 [https://github.com/pallets/jinja/issues/1198]


	Undefined is iterable in an async environment. #1294 [https://github.com/pallets/jinja/issues/1294]


	NativeEnvironment supports async mode. #1362 [https://github.com/pallets/jinja/issues/1362]


	Template rendering only treats \n, \r\n and \r as line
breaks. Other characters are left unchanged. #769 [https://github.com/pallets/jinja/issues/769], #952 [https://github.com/pallets/jinja/issues/952], #1313 [https://github.com/pallets/jinja/issues/1313]


	|groupby filter takes an optional default argument.
#1359 [https://github.com/pallets/jinja/issues/1359]


	The function and filter decorators have been renamed and unified.
The old names are deprecated. #1381 [https://github.com/pallets/jinja/issues/1381]


	pass_context replaces contextfunction and
contextfilter.


	pass_eval_context replaces evalcontextfunction and
evalcontextfilter


	pass_environment replaces environmentfunction and
environmentfilter.






	Async support no longer requires Jinja to patch itself. It must
still be enabled with Environment(enable_async=True).
#1390 [https://github.com/pallets/jinja/issues/1390]


	Overriding Context.resolve is deprecated, override
resolve_or_missing instead. #1380 [https://github.com/pallets/jinja/issues/1380]






Version 2.11.3

Released 2021-01-31


	Improve the speed of the urlize filter by reducing regex
backtracking. Email matching requires a word character at the start
of the domain part, and only word characters in the TLD. #1343 [https://github.com/pallets/jinja/pull/1343]






Version 2.11.2

Released 2020-04-13


	Fix a bug that caused callable objects with __getattr__, like
Mock [https://docs.python.org/3/library/unittest.mock.html#unittest.mock.Mock] to be treated as a
contextfunction(). #1145 [https://github.com/pallets/jinja/issues/1145]


	Update wordcount filter to trigger Undefined methods
by wrapping the input in soft_str(). #1160 [https://github.com/pallets/jinja/pull/1160]


	Fix a hang when displaying tracebacks on Python 32-bit.
#1162 [https://github.com/pallets/jinja/issues/1162]


	Showing an undefined error for an object that raises
AttributeError on access doesn’t cause a recursion error.
#1177 [https://github.com/pallets/jinja/issues/1177]


	Revert changes to PackageLoader from 2.10 which
removed the dependency on setuptools and pkg_resources, and added
limited support for namespace packages. The changes caused issues
when using Pytest. Due to the difficulty in supporting Python 2 and
PEP 451 [https://peps.python.org/pep-0451/] simultaneously, the changes are reverted until 3.0.
#1182 [https://github.com/pallets/jinja/pull/1182]


	Fix line numbers in error messages when newlines are stripped.
#1178 [https://github.com/pallets/jinja/pull/1178]


	The special namespace() assignment object in templates works in
async environments. #1180 [https://github.com/pallets/jinja/issues/1180]


	Fix whitespace being removed before tags in the middle of lines when
lstrip_blocks is enabled. #1138 [https://github.com/pallets/jinja/issues/1138]


	NativeEnvironment doesn’t evaluate
intermediate strings during rendering. This prevents early
evaluation which could change the value of an expression.
#1186 [https://github.com/pallets/jinja/issues/1186]






Version 2.11.1

Released 2020-01-30


	Fix a bug that prevented looking up a key after an attribute
({{ data.items[1:] }}) in an async template. #1141 [https://github.com/pallets/jinja/issues/1141]






Version 2.11.0

Released 2020-01-27


	Drop support for Python 2.6, 3.3, and 3.4. This will be the last
version to support Python 2.7 and 3.5.


	Added a new ChainableUndefined class to support getitem and
getattr on an undefined object. #977 [https://github.com/pallets/jinja/issues/977]


	Allow {%+ syntax (with NOP behavior) when lstrip_blocks is
disabled. #748 [https://github.com/pallets/jinja/issues/748]


	Added a default parameter for the map filter. #557 [https://github.com/pallets/jinja/issues/557]


	Exclude environment globals from
meta.find_undeclared_variables(). #931 [https://github.com/pallets/jinja/issues/931]


	Float literals can be written with scientific notation, like
2.56e-3. #912 [https://github.com/pallets/jinja/issues/912], #922 [https://github.com/pallets/jinja/pull/922]


	Int and float literals can be written with the ‘_’ separator for
legibility, like 12_345. #923 [https://github.com/pallets/jinja/pull/923]


	Fix a bug causing deadlocks in LRUCache.setdefault. #1000 [https://github.com/pallets/jinja/pull/1000]


	The trim filter takes an optional string of characters to trim.
#828 [https://github.com/pallets/jinja/pull/828]


	A new jinja2.ext.debug extension adds a {% debug %} tag to
quickly dump the current context and available filters and tests.
#174 [https://github.com/pallets/jinja/issues/174], #798 [https://github.com/pallets/jinja/pull/798], #983 [https://github.com/pallets/jinja/pull/983]


	Lexing templates with large amounts of whitespace is much faster.
#857 [https://github.com/pallets/jinja/issues/857], #858 [https://github.com/pallets/jinja/pull/858]


	Parentheses around comparisons are preserved, so
{{ 2 * (3 < 5) }} outputs “2” instead of “False”.
#755 [https://github.com/pallets/jinja/issues/755], #938 [https://github.com/pallets/jinja/pull/938]


	Add new boolean, false, true, integer and float
tests. #824 [https://github.com/pallets/jinja/pull/824]


	The environment’s finalize function is only applied to the
output of expressions (constant or not), not static template data.
#63 [https://github.com/pallets/jinja/issues/63]


	When providing multiple paths to FileSystemLoader, a template
can have the same name as a directory. #821 [https://github.com/pallets/jinja/issues/821]


	Always return Undefined when omitting the else clause
in a {{ 'foo' if bar }} expression, regardless of the
environment’s undefined class. Omitting the else clause is a
valid shortcut and should not raise an error when using
StrictUndefined. #710 [https://github.com/pallets/jinja/issues/710], #1079 [https://github.com/pallets/jinja/pull/1079]


	Fix behavior of loop control variables such as length and
revindex0 when looping over a generator. #459 [https://github.com/pallets/jinja/issues/459], #751 [https://github.com/pallets/jinja/issues/751], #794 [https://github.com/pallets/jinja/issues/794],
#993 [https://github.com/pallets/jinja/pull/993]


	Async support is only loaded the first time an environment enables
it, in order to avoid a slow initial import. #765 [https://github.com/pallets/jinja/issues/765]


	In async environments, the |map filter will await the filter
call if needed. #913 [https://github.com/pallets/jinja/pull/913]


	In for loops that access loop attributes, the iterator is not
advanced ahead of the current iteration unless length,
revindex, nextitem, or last are accessed. This makes it
less likely to break groupby results. #555 [https://github.com/pallets/jinja/issues/555], #1101 [https://github.com/pallets/jinja/pull/1101]


	In async environments, the loop attributes length and
revindex work for async iterators. #1101 [https://github.com/pallets/jinja/pull/1101]


	In async environments, values from attribute/property access will
be awaited if needed. #1101 [https://github.com/pallets/jinja/pull/1101]


	PackageLoader doesn’t depend on setuptools or
pkg_resources. #970 [https://github.com/pallets/jinja/issues/970]


	PackageLoader has limited support for PEP 420 [https://peps.python.org/pep-0420/] namespace
packages. #1097 [https://github.com/pallets/jinja/issues/1097]


	Support os.PathLike [https://docs.python.org/3/library/os.html#os.PathLike] objects in
FileSystemLoader and ModuleLoader.
#870 [https://github.com/pallets/jinja/issues/870]


	NativeTemplate correctly handles quotes
between expressions. "'{{ a }}', '{{ b }}'" renders as the tuple
('1', '2') rather than the string '1, 2'. #1020 [https://github.com/pallets/jinja/issues/1020]


	Creating a NativeTemplate directly creates a
NativeEnvironment instead of a default
Environment. #1091 [https://github.com/pallets/jinja/issues/1091]


	After calling LRUCache.copy(), the copy’s queue methods point to
the correct queue. #843 [https://github.com/pallets/jinja/issues/843]


	Compiling templates always writes UTF-8 instead of defaulting to the
system encoding. #889 [https://github.com/pallets/jinja/issues/889]


	|wordwrap filter treats existing newlines as separate paragraphs
to be wrapped individually, rather than creating short intermediate
lines. #175 [https://github.com/pallets/jinja/issues/175]


	Add break_on_hyphens parameter to |wordwrap filter.
#550 [https://github.com/pallets/jinja/issues/550]


	Cython compiled functions decorated as context functions will be
passed the context. #1108 [https://github.com/pallets/jinja/pull/1108]


	When chained comparisons of constants are evaluated at compile time,
the result follows Python’s behavior of returning False if any
comparison returns False, rather than only the last one.
#1102 [https://github.com/pallets/jinja/issues/1102]


	Tracebacks for exceptions in templates show the correct line numbers
and source for Python >= 3.7. #1104 [https://github.com/pallets/jinja/issues/1104]


	Tracebacks for template syntax errors in Python 3 no longer show
internal compiler frames. #763 [https://github.com/pallets/jinja/issues/763]


	Add a DerivedContextReference node that can be used by
extensions to get the current context and local variables such as
loop. #860 [https://github.com/pallets/jinja/issues/860]


	Constant folding during compilation is applied to some node types
that were previously overlooked. #733 [https://github.com/pallets/jinja/issues/733]


	TemplateSyntaxError.source is not empty when raised from an
included template. #457 [https://github.com/pallets/jinja/issues/457]


	Passing an Undefined value to get_template (such as through
extends, import, or include), raises an
UndefinedError consistently. select_template will show the
undefined message in the list of attempts rather than the empty
string. #1037 [https://github.com/pallets/jinja/issues/1037]


	TemplateSyntaxError can be pickled. #1117 [https://github.com/pallets/jinja/pull/1117]






Version 2.10.3

Released 2019-10-04


	Fix a typo in Babel entry point in setup.py that was preventing
installation.






Version 2.10.2

Released 2019-10-04


	Fix Python 3.7 deprecation warnings.


	Using range in the sandboxed environment uses xrange on
Python 2 to avoid memory use. #933 [https://github.com/pallets/jinja/issues/933]


	Use Python 3.7’s better traceback support to avoid a core dump when
using debug builds of Python 3.7. #1050 [https://github.com/pallets/jinja/issues/1050]






Version 2.10.1

Released 2019-04-06


	SandboxedEnvironment securely handles str.format_map in
order to prevent code execution through untrusted format strings.
The sandbox already handled str.format.






Version 2.10

Released 2017-11-08


	Added a new extension node called OverlayScope which can be used
to create an unoptimized scope that will look up all variables from
a derived context.


	Added an in test that works like the in operator. This can be
used in combination with reject and select.


	Added previtem and nextitem to loop contexts, providing
access to the previous/next item in the loop. If such an item does
not exist, the value is undefined.


	Added changed(*values) to loop contexts, providing an easy way
of checking whether a value has changed since the last iteration (or
rather since the last call of the method)


	Added a namespace function that creates a special object which
allows attribute assignment using the set tag. This can be used
to carry data across scopes, e.g. from a loop body to code that
comes after the loop.


	Added a trimmed modifier to {% trans %} to strip linebreaks
and surrounding whitespace. Also added a new policy to enable this
for all trans blocks.


	The random filter is no longer incorrectly constant folded and
will produce a new random choice each time the template is rendered.
#478 [https://github.com/pallets/jinja/pull/478]


	Added a unique filter. #469 [https://github.com/pallets/jinja/pull/469]


	Added min and max filters. #475 [https://github.com/pallets/jinja/pull/475]


	Added tests for all comparison operators: eq, ne, lt,
le, gt, ge. #665 [https://github.com/pallets/jinja/pull/665]


	import statement cannot end with a trailing comma. #617 [https://github.com/pallets/jinja/pull/617],
#618 [https://github.com/pallets/jinja/pull/618]


	indent filter will not indent blank lines by default. #685 [https://github.com/pallets/jinja/pull/685]


	Add reverse argument for dictsort filter. #692 [https://github.com/pallets/jinja/pull/692]


	Add a NativeEnvironment that renders templates to native Python
types instead of strings. #708 [https://github.com/pallets/jinja/pull/708]


	Added filter support to the block set tag. #489 [https://github.com/pallets/jinja/pull/489]


	tojson filter marks output as safe to match documented behavior.
#718 [https://github.com/pallets/jinja/pull/718]


	Resolved a bug where getting debug locals for tracebacks could
modify template context.


	Fixed a bug where having many {% elif ... %} blocks resulted in
a “too many levels of indentation” error. These blocks now compile
to native elif ..: instead of else: if ..: #759 [https://github.com/pallets/jinja/issues/759]






Version 2.9.6

Released 2017-04-03


	Fixed custom context behavior in fast resolve mode #675 [https://github.com/pallets/jinja/issues/675]






Version 2.9.5

Released 2017-01-28


	Restored the original repr of the internal _GroupTuple because
this caused issues with ansible and it was an unintended change.
#654 [https://github.com/pallets/jinja/issues/654]


	Added back support for custom contexts that override the old
resolve method since it was hard for people to spot that this
could cause a regression.


	Correctly use the buffer for the else block of for loops. This
caused invalid syntax errors to be caused on 2.x and completely
wrong behavior on Python 3 #669 [https://github.com/pallets/jinja/issues/669]


	Resolve an issue where the {% extends %} tag could not be used
with async environments. #668 [https://github.com/pallets/jinja/issues/668]


	Reduce memory footprint slightly by reducing our unicode database
dump we use for identifier matching on Python 3 #666 [https://github.com/pallets/jinja/issues/666]


	Fixed autoescaping not working for macros in async compilation mode.
#671 [https://github.com/pallets/jinja/issues/671]






Version 2.9.4

Released 2017-01-10


	Solved some warnings for string literals. #646 [https://github.com/pallets/jinja/issues/646]


	Increment the bytecode cache version which was not done due to an
oversight before.


	Corrected bad code generation and scoping for filtered loops.
#649 [https://github.com/pallets/jinja/issues/649]


	Resolved an issue where top-level output silencing after known
extend blocks could generate invalid code when blocks where
contained in if statements. #651 [https://github.com/pallets/jinja/issues/651]


	Made the truncate.leeway default configurable to improve
compatibility with older templates.






Version 2.9.3

Released 2017-01-08


	Restored the use of blocks in macros to the extend that was possible
before. On Python 3 it would render a generator repr instead of the
block contents. #645 [https://github.com/pallets/jinja/issues/645]


	Set a consistent behavior for assigning of variables in inner scopes
when the variable is also read from an outer scope. This now sets
the intended behavior in all situations however it does not restore
the old behavior where limited assignments to outer scopes was
possible. For more information and a discussion see #641 [https://github.com/pallets/jinja/issues/641]


	Resolved an issue where block scoped would not take advantage of
the new scoping rules. In some more exotic cases a variable
overridden in a local scope would not make it into a block.


	Change the code generation of the with statement to be in line
with the new scoping rules. This resolves some unlikely bugs in edge
cases. This also introduces a new internal With node that can be
used by extensions.






Version 2.9.2

Released 2017-01-08


	Fixed a regression that caused for loops to not be able to use the
same variable for the target as well as source iterator.
#640 [https://github.com/pallets/jinja/issues/640]


	Add support for a previously unknown behavior of macros. It used to
be possible in some circumstances to explicitly provide a caller
argument to macros. While badly buggy and unintended it turns out
that this is a common case that gets copy pasted around. To not
completely break backwards compatibility with the most common cases
it’s now possible to provide an explicit keyword argument for caller
if it’s given an explicit default. #642 [https://github.com/pallets/jinja/issues/642]






Version 2.9.1

Released 2017-01-07


	Resolved a regression with call block scoping for macros. Nested
caller blocks that used the same identifiers as outer macros could
refer to the wrong variable incorrectly.






Version 2.9

Released 2017-01-07, codename Derivation


	Change cache key definition in environment. This fixes a performance
regression introduced in 2.8.


	Added support for generator_stop on supported Python versions
(Python 3.5 and later)


	Corrected a long standing issue with operator precedence of math
operations not being what was expected.


	Added support for Python 3.6 async iterators through a new async
mode.


	Added policies for filter defaults and similar things.


	Urlize now sets “rel noopener” by default.


	Support attribute fallback for old-style classes in 2.x.


	Support toplevel set statements in extend situations.


	Restored behavior of Cycler for Python 3 users.


	Subtraction now follows the same behavior as other operators on
undefined values.


	map and friends will now give better error messages if you
forgot to quote the parameter.


	Depend on MarkupSafe 0.23 or higher.


	Improved the truncate filter to support better truncation in
case the string is barely truncated at all.


	Change the logic for macro autoescaping to be based on the runtime
autoescaping information at call time instead of macro define time.


	Ported a modified version of the tojson filter from Flask to
Jinja and hooked it up with the new policy framework.


	Block sets are now marked safe by default.


	On Python 2 the asciification of ASCII strings can now be disabled
with the compiler.ascii_str policy.


	Tests now no longer accept an arbitrary expression as first argument
but a restricted one. This means that you can now properly use
multiple tests in one expression without extra parentheses. In
particular you can now write foo is divisibleby 2 or foo is
divisibleby 3 as you would expect.


	Greatly changed the scoping system to be more consistent with what
template designers and developers expect. There is now no more magic
difference between the different include and import constructs.
Context is now always propagated the same way. The only remaining
differences is the defaults for with context and without
context.


	The with and autoescape tags are now built-in.


	Added the new select_autoescape function which helps configuring
better autoescaping easier.


	Fixed a runtime error in the sandbox when attributes of async
generators were accessed.






Version 2.8.1

Released 2016-12-29


	Fixed the for_qs flag for urlencode.


	Fixed regression when applying int to non-string values.


	SECURITY: if the sandbox mode is used format expressions are now
sandboxed with the same rules as in Jinja. This solves various
information leakage problems that can occur with format strings.






Version 2.8

Released 2015-07-26, codename Replacement


	Added target parameter to urlize function.


	Added support for followsymlinks to the file system loader.


	The truncate filter now counts the length.


	Added equalto filter that helps with select filters.


	Changed cache keys to use absolute file names if available instead
of load names.


	Fixed loop length calculation for some iterators.


	Changed how Jinja enforces strings to be native strings in Python 2
to work when people break their default encoding.


	Added make_logging_undefined which returns an undefined
object that logs failures into a logger.


	If unmarshalling of cached data fails the template will be reloaded
now.


	Implemented a block set tag.


	Default cache size was increased to 400 from a low 50.


	Fixed is number test to accept long integers in all Python
versions.


	Changed is number to accept Decimal as a number.


	Added a check for default arguments followed by non-default
arguments. This change makes {% macro m(x, y=1, z) %} a syntax
error. The previous behavior for this code was broken anyway
(resulting in the default value being applied to y).


	Add ability to use custom subclasses of
jinja2.compiler.CodeGenerator and jinja2.runtime.Context by
adding two new attributes to the environment
(code_generator_class and context_class). #404 [https://github.com/pallets/jinja/pull/404]


	Added support for context/environment/evalctx decorator functions on
the finalize callback of the environment.


	Escape query strings for urlencode properly. Previously slashes were
not escaped in that place.


	Add ‘base’ parameter to ‘int’ filter.






Version 2.7.3

Released 2014-06-06


	Security issue: Corrected the security fix for the cache folder.
This fix was provided by RedHat.






Version 2.7.2

Released 2014-01-10


	Prefix loader was not forwarding the locals properly to inner
loaders. This is now fixed.


	Security issue: Changed the default folder for the filesystem cache
to be user specific and read and write protected on UNIX systems.
See Debian bug 734747 [https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=734747] for more information.






Version 2.7.1

Released 2013-08-07


	Fixed a bug with call_filter not working properly on environment
and context filters.


	Fixed lack of Python 3 support for bytecode caches.


	Reverted support for defining blocks in included templates as this
broke existing templates for users.


	Fixed some warnings with hashing of undefineds and nodes if Python
is run with warnings for Python 3.


	Added support for properly hashing undefined objects.


	Fixed a bug with the title filter not working on already uppercase
strings.






Version 2.7

Released 2013-05-20, codename Translation


	Choice and prefix loaders now dispatch source and template lookup
separately in order to work in combination with module loaders as
advertised.


	Fixed filesizeformat.


	Added a non-silent option for babel extraction.


	Added urlencode filter that automatically quotes values for URL
safe usage with utf-8 as only supported encoding. If applications
want to change this encoding they can override the filter.


	Added keep-trailing-newline configuration to environments and
templates to optionally preserve the final trailing newline.


	Accessing last on the loop context no longer causes the iterator
to be consumed into a list.


	Python requirement changed: 2.6, 2.7 or >= 3.3 are required now,
supported by same source code, using the “six” compatibility
library.


	Allow contextfunction and other decorators to be applied to
__call__.


	Added support for changing from newline to different signs in the
wordwrap filter.


	Added support for ignoring memcache errors silently.


	Added support for keeping the trailing newline in templates.


	Added finer grained support for stripping whitespace on the left
side of blocks.


	Added map, select, reject, selectattr and
rejectattr filters.


	Added support for loop.depth to figure out how deep inside a
recursive loop the code is.


	Disabled py_compile for pypy and python 3.






Version 2.6

Released 2011-07-24, codename Convolution


	Internal attributes now raise an internal attribute error now
instead of returning an undefined. This fixes problems when passing
undefined objects to Python semantics expecting APIs.


	Traceback support now works properly for PyPy. (Tested with 1.4)


	Implemented operator intercepting for sandboxed environments. This
allows application developers to disable builtin operators for
better security. (For instance limit the mathematical operators to
actual integers instead of longs)


	Groupby filter now supports dotted notation for grouping by
attributes of attributes.


	Scoped blocks now properly treat toplevel assignments and imports.
Previously an import suddenly “disappeared” in a scoped block.


	Automatically detect newer Python interpreter versions before
loading code from bytecode caches to prevent segfaults on invalid
opcodes. The segfault in earlier Jinja versions here was not a
Jinja bug but a limitation in the underlying Python interpreter. If
you notice Jinja segfaulting in earlier versions after an upgrade
of the Python interpreter you don’t have to upgrade, it’s enough to
flush the bytecode cache. This just no longer makes this necessary,
Jinja will automatically detect these cases now.


	The sum filter can now sum up values by attribute. This is a
backwards incompatible change. The argument to the filter previously
was the optional starting index which defaults to zero. This now
became the second argument to the function because it’s rarely used.


	Like sum, sort now also makes it possible to order items by
attribute.


	Like sum and sort, join now also is able to join attributes of
objects as string.


	The internal eval context now has a reference to the environment.


	Added a mapping test to see if an object is a dict or an object with
a similar interface.






Version 2.5.5

Released 2010-10-18


	Built documentation is no longer part of release.






Version 2.5.4

Released 2010-10-17


	Fixed extensions not loading properly with overlays.


	Work around a bug in cpython for the debugger that causes segfaults
on 64bit big-endian architectures.






Version 2.5.3

Released 2010-10-17


	Fixed an operator precedence error introduced in 2.5.2. Statements
like “-foo.bar” had their implicit parentheses applied around the
first part of the expression (“(-foo).bar”) instead of the more
correct “-(foo.bar)”.






Version 2.5.2

Released 2010-08-18


	Improved setup.py script to better work with assumptions people
might still have from it (--with-speedups).


	Fixed a packaging error that excluded the new debug support.






Version 2.5.1

Released 2010-08-17


	StopIteration exceptions raised by functions called from templates
are now intercepted and converted to undefineds. This solves a lot
of debugging grief. (StopIteration is used internally to abort
template execution)


	Improved performance of macro calls slightly.


	Babel extraction can now properly extract newstyle gettext calls.


	Using the variable num in newstyle gettext for something else
than the pluralize count will no longer raise a KeyError [https://docs.python.org/3/library/exceptions.html#KeyError].


	Removed builtin markup class and switched to markupsafe. For
backwards compatibility the pure Python implementation still exists
but is pulled from markupsafe by the Jinja developers. The debug
support went into a separate feature called “debugsupport” and is
disabled by default because it is only relevant for Python 2.4


	Fixed an issue with unary operators having the wrong precedence.






Version 2.5

Released 2010-05-29, codename Incoherence


	Improved the sort filter (should have worked like this for a long
time) by adding support for case insensitive searches.


	Fixed a bug for getattribute constant folding.


	Support for newstyle gettext translations which result in a nicer
in-template user interface and more consistent catalogs.


	It’s now possible to register extensions after an environment was
created.






Version 2.4.1

Released 2010-04-20


	Fixed an error reporting bug for undefined.






Version 2.4

Released 2010-04-13, codename Correlation


	The environment template loading functions now transparently pass
through a template object if it was passed to it. This makes it
possible to import or extend from a template object that was passed
to the template.


	Added a ModuleLoader that can load templates from
precompiled sources. The environment now features a method to
compile the templates from a configured loader into a zip file or
folder.


	The _speedups C extension now supports Python 3.


	Added support for autoescaping toggling sections and support for
evaluation contexts.


	Extensions have a priority now.






Version 2.3.1

Released 2010-02-19


	Fixed an error reporting bug on all python versions


	Fixed an error reporting bug on Python 2.4






Version 2.3

Released 2010-02-10, codename 3000 Pythons


	Fixes issue with code generator that causes unbound variables to be
generated if set was used in if-blocks and other small identifier
problems.


	Include tags are now able to select between multiple templates and
take the first that exists, if a list of templates is given.


	Fixed a problem with having call blocks in outer scopes that have an
argument that is also used as local variable in an inner frame
#360 [https://github.com/pallets/jinja/issues/360].


	Greatly improved error message reporting #339 [https://github.com/pallets/jinja/pull/339]


	Implicit tuple expressions can no longer be totally empty. This
change makes {% if %} a syntax error now. #364 [https://github.com/pallets/jinja/issues/364]


	Added support for translator comments if extracted via babel.


	Added with-statement extension.


	Experimental Python 3 support.






Version 2.2.1

Released 2009-09-14


	Fixes some smaller problems for Jinja on Jython.






Version 2.2

Released 2009-09-13, codename Kong


	Include statements can now be marked with ignore missing to skip
non existing templates.


	Priority of not raised. It’s now possible to write not foo in
bar as an alias to foo not in bar like in python. Previously
the grammar required parentheses (not (foo in bar)) which was
odd.


	Fixed a bug that caused syntax errors when defining macros or using
the {% call %} tag inside loops.


	Fixed a bug in the parser that made {{ foo[1, 2] }} impossible.


	Made it possible to refer to names from outer scopes in included
templates that were unused in the callers frame #327 [https://github.com/pallets/jinja/issues/327]


	Fixed a bug that caused internal errors if names where used as
iteration variable and regular variable after the loop if that
variable was unused before the loop. #331 [https://github.com/pallets/jinja/pull/331]


	Added support for optional scoped modifier to blocks.


	Added support for line-comments.


	Added the meta module.


	Renamed (undocumented) attribute “overlay” to “overlayed” on the
environment because it was clashing with a method of the same name.


	Speedup extension is now disabled by default.






Version 2.1.1

Released 2008-12-25


	Fixed a translation error caused by looping over empty recursive
loops.






Version 2.1

Released 2008-11-23, codename Yasuzō


	Fixed a bug with nested loops and the special loop variable. Before
the change an inner loop overwrote the loop variable from the outer
one after iteration.


	Fixed a bug with the i18n extension that caused the explicit
pluralization block to look up the wrong variable.


	Fixed a limitation in the lexer that made {{ foo.0.0 }}
impossible.


	Index based subscribing of variables with a constant value returns
an undefined object now instead of raising an index error. This was
a bug caused by eager optimizing.


	The i18n extension looks up foo.ugettext now followed by
foo.gettext if an translations object is installed. This makes
dealing with custom translations classes easier.


	Fixed a confusing behavior with conditional extending. loops were
partially executed under some conditions even though they were not
part of a visible area.


	Added sort filter that works like dictsort but for arbitrary
sequences.


	Fixed a bug with empty statements in macros.


	Implemented a bytecode cache system.


	The template context is now weakref-able


	Inclusions and imports “with context” forward all variables now, not
only the initial context.


	Added a cycle helper called cycler.


	Added a joining helper called joiner.


	Added a compile_expression method to the environment that allows
compiling of Jinja expressions into callable Python objects.


	Fixed an escaping bug in urlize






Version 2.0

Released 2008-07-17, codename Jinjavitus


	The subscribing of objects (looking up attributes and items) changed
from slightly. It’s now possible to give attributes or items a
higher priority by either using dot-notation lookup or the bracket
syntax. This also changed the AST slightly. Subscript is gone
and was replaced with Getitem and Getattr.


	Added support for preprocessing and token stream filtering for
extensions. This would allow extensions to allow simplified gettext
calls in template data and something similar.


	Added TemplateStream.dump.


	Added missing support for implicit string literal concatenation.
{{ "foo" "bar" }} is equivalent to {{ "foobar" }}


	else is optional for conditional expressions. If not given it
evaluates to false.


	Improved error reporting for undefined values by providing a
position.


	filesizeformat filter uses decimal prefixes now per default and
can be set to binary mode with the second parameter.


	Fixed bug in finalizer






Version 2.0rc1

Released 2008-06-09


	First release of Jinja 2.








            

          

      

      

    

  

    
      
          
            

   Python Module Index


   
   j
   


   
     		 	

     		
       j	

     
       	[image: -]
       	
       jinja2	
       

     
       	
       	   
       jinja2.ext	
       

     
       	
       	   
       jinja2.nativetypes	
       

     
       	
       	   
       jinja2.nodes	
       

     
       	
       	   
       jinja2.sandbox	
       

   



            

          

      

      

    

  

    
      
          
            

Index



 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | X
 


_


  	
      	__next__() (jinja2.lexer.TokenStream method)


      	_fail_with_undefined_error() (jinja2.Undefined method)


      	_FilterTestCommon (class in jinja2.nodes)


  

  	
      	_undefined_exception (jinja2.Undefined attribute)


      	_undefined_hint (jinja2.Undefined attribute)


      	_undefined_name (jinja2.Undefined attribute)


      	_undefined_obj (jinja2.Undefined attribute)


  





A


  	
      	abs() (in module jinja-filters)


      	Add (class in jinja2.nodes)


      	add_extension() (jinja2.Environment method)


      	And (class in jinja2.nodes)


      	as_const() (jinja2.nodes.Expr method)


  

  	
      	Assign (class in jinja2.nodes)


      	AssignBlock (class in jinja2.nodes)


      	attr() (in module jinja-filters)

      
        	(jinja2.ext.Extension method)


      


      	autoescape (jinja2.nodes.EvalContext attribute)


  





B


  	
      	BaseLoader (class in jinja2)


      	batch() (in module jinja-filters)


      	BinExpr (class in jinja2.nodes)


      	Block (class in jinja2.nodes)


      	blocks (jinja2.runtime.Context attribute)

      
        	(jinja2.Template attribute)


      


  

  	
      	boolean() (in module jinja-tests)


      	Break (class in jinja2.nodes)


      	Bucket (class in jinja2.bccache)


      	bytecode_from_string() (jinja2.bccache.Bucket method)


      	bytecode_to_string() (jinja2.bccache.Bucket method)


      	BytecodeCache (class in jinja2)


  





C


  	
      	Call (class in jinja2.nodes)


      	call() (jinja2.runtime.Context method)


      	call_binop() (jinja2.sandbox.SandboxedEnvironment method)


      	call_method() (jinja2.ext.Extension method)


      	call_unop() (jinja2.sandbox.SandboxedEnvironment method)


      	callable() (in module jinja-tests)


      	CallBlock (class in jinja2.nodes)


      	can_assign() (jinja2.nodes.Expr method)


      	capitalize() (in module jinja-filters)


      	center() (in module jinja-filters)


      	ChainableUndefined (class in jinja2)


      	ChoiceLoader (class in jinja2)


      	clear() (jinja2.BytecodeCache method)


      	clear_caches() (in module jinja2)


      	code (jinja2.bccache.Bucket attribute)


  

  	
      	code_generator_class (jinja2.Environment attribute)


      	Compare (class in jinja2.nodes)


      	compile_expression() (jinja2.Environment method)


      	compile_templates() (jinja2.Environment method)


      	Concat (class in jinja2.nodes)


      	CondExpr (class in jinja2.nodes)


      	Const (class in jinja2.nodes)


      	Context (class in jinja2.runtime)


      	context_class (jinja2.Environment attribute)


      	ContextReference (class in jinja2.nodes)


      	Continue (class in jinja2.nodes)


      	count_newlines() (in module jinja2.lexer)


      	current (jinja-globals.cycler property)

      
        	(jinja2.lexer.TokenStream attribute)


      


      	cycler (class in jinja-globals)


  





D


  	
      	DebugUndefined (class in jinja2)


      	default() (in module jinja-filters)


      	default_binop_table (jinja2.sandbox.SandboxedEnvironment attribute)


      	default_unop_table (jinja2.sandbox.SandboxedEnvironment attribute)


      	defined() (in module jinja-tests)


      	DerivedContextReference (class in jinja2.nodes)


      	Dict (class in jinja2.nodes)


  

  	
      	dict() (in module jinja-globals)


      	DictLoader (class in jinja2)


      	dictsort() (in module jinja-filters)


      	disable_buffering() (jinja2.environment.TemplateStream method)


      	Div (class in jinja2.nodes)


      	divisibleby() (in module jinja-tests)


      	dump() (jinja2.environment.TemplateStream method)


      	dump_bytecode() (jinja2.BytecodeCache method)


  





E


  	
      	enable_buffering() (jinja2.environment.TemplateStream method)


      	Environment (class in jinja2)


      	environment (jinja2.bccache.Bucket attribute)

      
        	(jinja2.runtime.Context attribute)


      


      	EnvironmentAttribute (class in jinja2.nodes)


      	eos (jinja2.lexer.TokenStream property)


      	eq() (in module jinja-tests)


      	escape() (in module jinja-filters)


      	escaped() (in module jinja-tests)


      	eval_ctx (jinja2.runtime.Context attribute)


      	EvalContext (class in jinja2.nodes)


  

  	
      	EvalContextModifier (class in jinja2.nodes)


      	even() (in module jinja-tests)


      	expect() (jinja2.lexer.TokenStream method)


      	exported_vars (jinja2.runtime.Context attribute)


      	Expr (class in jinja2.nodes)


      	ExprStmt (class in jinja2.nodes)


      	extend() (jinja2.Environment method)


      	Extends (class in jinja2.nodes)


      	Extension (class in jinja2.ext)


      	ExtensionAttribute (class in jinja2.nodes)


      	extract_translations() (jinja2.Environment method)


  





F


  	
      	fail() (jinja2.parser.Parser method)


      	false() (in module jinja-tests)


      	filename (jinja2.parser.Parser attribute)

      
        	(jinja2.Template attribute)


        	(jinja2.TemplateSyntaxError attribute)


      


      	filesizeformat() (in module jinja-filters)


      	FileSystemBytecodeCache (class in jinja2)


      	FileSystemLoader (class in jinja2)


      	Filter (class in jinja2.nodes)


      	filter() (in module jinja-tests)


      	filter_stream() (jinja2.ext.Extension method)


      	FilterBlock (class in jinja2.nodes)


      	filters (jinja2.Environment attribute)


      	find() (jinja2.nodes.Node method)


  

  	
      	find_all() (jinja2.nodes.Node method)


      	find_referenced_templates() (in module jinja2.meta)


      	find_undeclared_variables() (in module jinja2.meta)


      	first() (in module jinja-filters)


      	float() (in module jinja-filters)

      
        	(in module jinja-tests)


      


      	FloorDiv (class in jinja2.nodes)


      	For (class in jinja2.nodes)


      	forceescape() (in module jinja-filters)


      	format() (in module jinja-filters)


      	free_identifier() (jinja2.parser.Parser method)


      	from_string() (jinja2.Environment method)


      	FromImport (class in jinja2.nodes)


      	FunctionLoader (class in jinja2)


  





G


  	
      	ge() (in module jinja-tests)


      	generate() (jinja2.Template method)


      	generate_async() (jinja2.Template method)


      	get() (jinja2.MemcachedBytecodeCache.MinimalClientInterface method)

      
        	(jinja2.runtime.Context method)


      


      	get_all() (jinja2.runtime.Context method)


      	get_exported() (jinja2.runtime.Context method)


      	get_or_select_template() (jinja2.Environment method)


  

  	
      	get_source() (jinja2.BaseLoader method)


      	get_template() (jinja2.Environment method)


      	Getattr (class in jinja2.nodes)


      	Getitem (class in jinja2.nodes)


      	globals (jinja2.Environment attribute)

      
        	(jinja2.Template attribute)


      


      	groupby() (in module jinja-filters)


      	gt() (in module jinja-tests)


  





H


  	
      	Helper (class in jinja2.nodes)


  





I


  	
      	identifier (jinja2.ext.Extension attribute)


      	If (class in jinja2.nodes)


      	ImmutableSandboxedEnvironment (class in jinja2.sandbox)


      	Import (class in jinja2.nodes)


      	ImportedName (class in jinja2.nodes)


      	Impossible


      	in() (in module jinja-tests)


      	Include (class in jinja2.nodes)


      	indent() (in module jinja-filters)


      	install_gettext_callables() (jinja2.Environment method)


      	install_gettext_translations() (jinja2.Environment method)


      	install_null_translations() (jinja2.Environment method)


      	int() (in module jinja-filters)


  

  	
      	integer() (in module jinja-tests)


      	intercepted_binops (jinja2.sandbox.SandboxedEnvironment attribute)


      	intercepted_unops (jinja2.sandbox.SandboxedEnvironment attribute)


      	InternalName (class in jinja2.nodes)


      	is_internal_attribute() (in module jinja2.sandbox)


      	is_safe_attribute() (jinja2.sandbox.SandboxedEnvironment method)


      	is_safe_callable() (jinja2.sandbox.SandboxedEnvironment method)


      	is_undefined() (in module jinja2)


      	is_up_to_date (jinja2.Template attribute)


      	items() (in module jinja-filters)


      	iter_child_nodes() (jinja2.nodes.Node method)


      	iter_fields() (jinja2.nodes.Node method)


      	iterable() (in module jinja-tests)


  





J


  	
      	
    jinja2.ext

      
        	module


      


      	
    jinja2.nativetypes

      
        	module


      


      	
    jinja2.nodes

      
        	module


      


  

  	
      	
    jinja2.sandbox

      
        	module


      


      	join() (in module jinja-filters)


      	join_path() (jinja2.Environment method)


      	joiner (class in jinja-globals)


  





K


  	
      	key (jinja2.bccache.Bucket attribute)


  

  	
      	Keyword (class in jinja2.nodes)


  





L


  	
      	last() (in module jinja-filters)


      	le() (in module jinja-tests)


      	length() (in module jinja-filters)


      	lex() (jinja2.Environment method)


      	lineno (jinja2.lexer.Token attribute)

      
        	(jinja2.TemplateSyntaxError attribute)


      


      	lipsum() (in module jinja-globals)


      	List (class in jinja2.nodes)


      	list() (in module jinja-filters)


  

  	
      	list_templates() (jinja2.Environment method)


      	Literal (class in jinja2.nodes)


      	load() (jinja2.BaseLoader method)


      	load_bytecode() (jinja2.bccache.Bucket method)

      
        	(jinja2.BytecodeCache method)


      


      	look() (jinja2.lexer.TokenStream method)


      	lower() (in module jinja-filters)

      
        	(in module jinja-tests)


      


      	lt() (in module jinja-tests)


  





M


  	
      	Macro (class in jinja2.nodes)


      	make_logging_undefined() (in module jinja2)


      	make_module() (jinja2.Template method)


      	map() (in module jinja-filters)


      	mapping() (in module jinja-tests)


      	MarkSafe (class in jinja2.nodes)


      	MarkSafeIfAutoescape (class in jinja2.nodes)


      	max() (in module jinja-filters)


      	MemcachedBytecodeCache (class in jinja2)


      	MemcachedBytecodeCache.MinimalClientInterface (class in jinja2)


      	message (jinja2.TemplateSyntaxError attribute)


  

  	
      	min() (in module jinja-filters)


      	Mod (class in jinja2.nodes)


      	modifies_known_mutable() (in module jinja2.sandbox)


      	
    module

      
        	jinja2.ext


        	jinja2.nativetypes


        	jinja2.nodes


        	jinja2.sandbox


      


      	module (jinja2.Template property)


      	ModuleLoader (class in jinja2)


      	Mul (class in jinja2.nodes)


  





N


  	
      	Name (class in jinja2.nodes)


      	name (jinja2.parser.Parser attribute)

      
        	(jinja2.runtime.Context attribute)


        	(jinja2.Template attribute)


        	(jinja2.TemplateSyntaxError attribute)


      


      	namespace (class in jinja-globals)


      	NativeEnvironment (class in jinja2.nativetypes)


      	NativeTemplate (class in jinja2.nativetypes)


      	ne() (in module jinja-tests)


  

  	
      	Neg (class in jinja2.nodes)


      	new_context() (jinja2.Template method)


      	next() (jinja-globals.cycler method)


      	next_if() (jinja2.lexer.TokenStream method)


      	Node (class in jinja2.nodes)


      	none() (in module jinja-tests)


      	Not (class in jinja2.nodes)


      	NSRef (class in jinja2.nodes)


      	number() (in module jinja-tests)


  





O


  	
      	odd() (in module jinja-tests)


      	Operand (class in jinja2.nodes)


      	Or (class in jinja2.nodes)


  

  	
      	Output (class in jinja2.nodes)


      	overlay() (jinja2.Environment method)


      	OverlayScope (class in jinja2.nodes)


  





P


  	
      	PackageLoader (class in jinja2)


      	Pair (class in jinja2.nodes)


      	parent (jinja2.runtime.Context attribute)


      	parse() (jinja2.Environment method)

      
        	(jinja2.ext.Extension method)


      


      	parse_assign_target() (jinja2.parser.Parser method)


      	parse_expression() (jinja2.parser.Parser method)


      	parse_statements() (jinja2.parser.Parser method)


      	parse_tuple() (jinja2.parser.Parser method)


      	Parser (class in jinja2.parser)


      	pass_context() (in module jinja2)


      	pass_environment() (in module jinja2)


  

  	
      	pass_eval_context() (in module jinja2)


      	policies (jinja2.Environment attribute)


      	Pos (class in jinja2.nodes)


      	Pow (class in jinja2.nodes)


      	pprint() (in module jinja-filters)


      	PrefixLoader (class in jinja2)


      	preprocess() (jinja2.Environment method)

      
        	(jinja2.ext.Extension method)


      


      	push() (jinja2.lexer.TokenStream method)


      	
    Python Enhancement Proposals

      
        	PEP 420, [1]


        	PEP 451, [1]


      


  





R


  	
      	random() (in module jinja-filters)


      	range() (in module jinja-globals)


      	reject() (in module jinja-filters)


      	rejectattr() (in module jinja-filters)


      	render() (jinja2.nativetypes.NativeTemplate method)

      
        	(jinja2.Template method)


      


      	render_async() (jinja2.Template method)


  

  	
      	replace() (in module jinja-filters)


      	reset() (jinja-globals.cycler method)

      
        	(jinja2.bccache.Bucket method)


      


      	resolve() (jinja2.runtime.Context method)


      	resolve_or_missing() (jinja2.runtime.Context method)


      	reverse() (in module jinja-filters)


      	root_render_func() (jinja2.Template method)


      	round() (in module jinja-filters)


  





S


  	
      	safe() (in module jinja-filters)


      	sameas() (in module jinja-tests)


      	sandboxed (jinja2.Environment attribute)


      	SandboxedEnvironment (class in jinja2.sandbox)


      	Scope (class in jinja2.nodes)


      	ScopedEvalContextModifier (class in jinja2.nodes)


      	SecurityError


      	select() (in module jinja-filters)


      	select_autoescape() (in module jinja2)


      	select_template() (jinja2.Environment method)


      	selectattr() (in module jinja-filters)


      	sequence() (in module jinja-tests)


      	set() (jinja2.MemcachedBytecodeCache.MinimalClientInterface method)


      	set_ctx() (jinja2.nodes.Node method)


      	set_environment() (jinja2.nodes.Node method)


  

  	
      	set_lineno() (jinja2.nodes.Node method)


      	shared (jinja2.Environment attribute)


      	skip() (jinja2.lexer.TokenStream method)


      	skip_if() (jinja2.lexer.TokenStream method)


      	Slice (class in jinja2.nodes)


      	slice() (in module jinja-filters)


      	sort() (in module jinja-filters)


      	Stmt (class in jinja2.nodes)


      	stream (jinja2.parser.Parser attribute)


      	stream() (jinja2.Template method)


      	StrictUndefined (class in jinja2)


      	string() (in module jinja-filters)

      
        	(in module jinja-tests)


      


      	striptags() (in module jinja-filters)


      	Sub (class in jinja2.nodes)


      	sum() (in module jinja-filters)


  





T


  	
      	tags (jinja2.ext.Extension attribute)


      	Template (class in jinja2)

      
        	(class in jinja2.nodes)


      


      	TemplateAssertionError


      	TemplateData (class in jinja2.nodes)


      	TemplateError


      	TemplateNotFound


      	TemplateRuntimeError


      	TemplatesNotFound


      	TemplateStream (class in jinja2.environment)


      	TemplateSyntaxError


      	Test (class in jinja2.nodes)


  

  	
      	test() (in module jinja-tests)

      
        	(jinja2.lexer.Token method)


      


      	test_any() (jinja2.lexer.Token method)


      	tests (jinja2.Environment attribute)


      	title() (in module jinja-filters)


      	tojson() (in module jinja-filters)


      	Token (class in jinja2.lexer)


      	TokenStream (class in jinja2.lexer)


      	trim() (in module jinja-filters)


      	true() (in module jinja-tests)


      	truncate() (in module jinja-filters)


      	Tuple (class in jinja2.nodes)


      	type (jinja2.lexer.Token attribute)


  





U


  	
      	UnaryExpr (class in jinja2.nodes)


      	Undefined (class in jinja2)


      	undefined() (in module jinja-tests)

      
        	(jinja2.Environment method)


      


      	UndefinedError


      	uninstall_gettext_translations() (jinja2.Environment method)


  

  	
      	unique() (in module jinja-filters)


      	unsafe() (in module jinja2.sandbox)


      	upper() (in module jinja-filters)

      
        	(in module jinja-tests)


      


      	urlencode() (in module jinja-filters)


      	urlize() (in module jinja-filters)


  





V


  	
      	value (jinja2.lexer.Token attribute)


  

  	
      	vars (jinja2.runtime.Context attribute)


      	volatile (jinja2.nodes.EvalContext attribute)


  





W


  	
      	With (class in jinja2.nodes)


      	wordcount() (in module jinja-filters)


  

  	
      	wordwrap() (in module jinja-filters)


      	write_bytecode() (jinja2.bccache.Bucket method)


  





X


  	
      	xmlattr() (in module jinja-filters)


  







            

          

      

      

    

  _images/jinja-logo.png
'ﬁ Jinja





_static/file.png





_static/jinja-logo-sidebar.png





_static/jinja-logo.png
'ﬁ Jinja





nav.xhtml

    
      Table of Contents


      
        		
          Jinja
        


        		
          Introduction
          
            		
              Installation
              
                		
                  Dependencies
                


                		
                  Optional Dependencies
                


              


            


          


        


        		
          API
          
            		
              Basics
            


            		
              High Level API
            


            		
              Autoescaping
            


            		
              Notes on Identifiers
            


            		
              Undefined Types
            


            		
              The Context
            


            		
              Loaders
            


            		
              Bytecode Cache
            


            		
              Async Support
            


            		
              Policies
            


            		
              Utilities
            


            		
              Exceptions
            


            		
              Custom Filters
            


            		
              Custom Tests
            


            		
              Evaluation Context
            


            		
              The Global Namespace
            


            		
              Low Level API
            


            		
              The Meta API
            


          


        


        		
          Sandbox
          
            		
              Security Considerations
            


            		
              API
            


            		
              Operator Intercepting
            


          


        


        		
          Native Python Types
          
            		
              Examples
            


            		
              API
            


          


        


        		
          Template Designer Documentation
          
            		
              Synopsis
              
                		
                  Template File Extension
                


              


            


            		
              Variables
            


            		
              Filters
            


            		
              Tests
            


            		
              Comments
            


            		
              Whitespace Control
            


            		
              Escaping
            


            		
              Line Statements
            


            		
              Template Inheritance
              
                		
                  Base Template
                


                		
                  Child Template
                


                		
                  Super Blocks
                


                		
                  Nesting extends
                


                		
                  Named Block End-Tags
                


                		
                  Block Nesting and Scope
                


                		
                  Required Blocks
                


                		
                  Template Objects
                


              


            


            		
              HTML Escaping
              
                		
                  Working with Manual Escaping
                


                		
                  Working with Automatic Escaping
                


              


            


            		
              List of Control Structures
              
                		
                  For
                


                		
                  If
                


                		
                  Macros
                


                		
                  Call
                


                		
                  Filters
                


                		
                  Assignments
                


                		
                  Block Assignments
                


                		
                  Extends
                


                		
                  Blocks
                


                		
                  Include
                


                		
                  Import
                


              


            


            		
              Import Context Behavior
            


            		
              Expressions
              
                		
                  Literals
                


                		
                  Math
                


                		
                  Comparisons
                


                		
                  Logic
                


                		
                  Other Operators
                


                		
                  If Expression
                


                		
                  Python Methods
                


              


            


            		
              List of Builtin Filters
            


            		
              List of Builtin Tests
            


            		
              List of Global Functions
            


            		
              Extensions
              
                		
                  i18n
                


                		
                  Expression Statement
                


                		
                  Loop Controls
                


                		
                  Debug Statement
                


                		
                  With Statement
                


              


            


            		
              Autoescape Overrides
            


          


        


        		
          Extensions
          
            		
              Adding Extensions
            


            		
              i18n Extension
              
                		
                  Environment Methods
                


                		
                  Whitespace Trimming
                


                		
                  New Style Gettext
                


              


            


            		
              Expression Statement
            


            		
              Loop Controls
            


            		
              With Statement
            


            		
              Autoescape Extension
            


            		
              Debug Extension
            


            		
              Writing Extensions
            


            		
              Example Extensions
              
                		
                  Cache
                


                		
                  Inline gettext
                


              


            


            		
              Extension API
              
                		
                  Extension
                


                		
                  Parser
                


                		
                  AST
                


              


            


          


        


        		
          Integration
          
            		
              Flask
            


            		
              Django
            


            		
              Babel
            


            		
              Pylons
            


          


        


        		
          Switching From Other Template Engines
          
            		
              Django
              
                		
                  Method Calls
                


                		
                  Filter Arguments
                


                		
                  Tests
                


                		
                  Loops
                


                		
                  Cycle
                


              


            


            		
              Mako
            


          


        


        		
          Tips and Tricks
          
            		
              Null-Default Fallback
            


            		
              Alternating Rows
            


            		
              Highlighting Active Menu Items
            


            		
              Accessing the parent Loop
            


          


        


        		
          Frequently Asked Questions
          
            		
              Why is it called Jinja?
            


            		
              How fast is Jinja?
            


            		
              Isn’t it a bad idea to put logic in templates?
            


            		
              Why is HTML escaping not the default?
            


          


        


        		
          BSD-3-Clause License
        


        		
          Changes
          
            		
              Version 3.2.0
            


            		
              Version 3.1.2
            


            		
              Version 3.1.1
            


            		
              Version 3.1.0
            


            		
              Version 3.0.3
            


            		
              Version 3.0.2
            


            		
              Version 3.0.1
            


            		
              Version 3.0.0
            


            		
              Version 2.11.3
            


            		
              Version 2.11.2
            


            		
              Version 2.11.1
            


            		
              Version 2.11.0
            


            		
              Version 2.10.3
            


            		
              Version 2.10.2
            


            		
              Version 2.10.1
            


            		
              Version 2.10
            


            		
              Version 2.9.6
            


            		
              Version 2.9.5
            


            		
              Version 2.9.4
            


            		
              Version 2.9.3
            


            		
              Version 2.9.2
            


            		
              Version 2.9.1
            


            		
              Version 2.9
            


            		
              Version 2.8.1
            


            		
              Version 2.8
            


            		
              Version 2.7.3
            


            		
              Version 2.7.2
            


            		
              Version 2.7.1
            


            		
              Version 2.7
            


            		
              Version 2.6
            


            		
              Version 2.5.5
            


            		
              Version 2.5.4
            


            		
              Version 2.5.3
            


            		
              Version 2.5.2
            


            		
              Version 2.5.1
            


            		
              Version 2.5
            


            		
              Version 2.4.1
            


            		
              Version 2.4
            


            		
              Version 2.3.1
            


            		
              Version 2.3
            


            		
              Version 2.2.1
            


            		
              Version 2.2
            


            		
              Version 2.1.1
            


            		
              Version 2.1
            


            		
              Version 2.0
            


            		
              Version 2.0rc1
            


          


        


      


    
  

_static/minus.png





_static/plus.png





